• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 21
  • 19
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 158
  • 76
  • 40
  • 36
  • 31
  • 29
  • 29
  • 25
  • 21
  • 20
  • 18
  • 17
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Eulerian Functions of Cyclic Groups, Dihedral Groups, and P-Groups

Sewell, Cynthia M. (Cynthia Marie) 08 1900 (has links)
In 1935, Philip Hall developed a formula for finding the number of ways of generating the group of symmetries of the icosahedron from a given number of its elements. In doing so, he defined a generalized Eulerian function. This thesis uses Hall's generalized Eulerian function to calculate generalized Eulerian functions for specific groups, namely: cyclic groups, dihedral groups, and p- groups.
22

On the Fuel Spray Applications of Multi-Phase Eulerian CFD Techniques

Jacobsohn, Gabriel Lev 29 October 2019 (has links)
Eulerian-Eulerian Computational Fluid Dynamics (CFD) techniques continue to show promise for characterizing the internal flow and near-field spray for various fuel injection systems. These regions are difficult to observe experimentally, and simulations of such regions are limited by computational expense or reliance on empiricism using other methods. The physics governing spray atomization are first introduced. Impinging jet sprays and Gasoline Direct Injection (GDI) are selected as applications, and modern computational/experimental approaches to their study are reviewed. Two in-house CFD solvers are described and subsequently applied in several case studies. Accurate prediction of the liquid distribution in a like-doublet impinging jet spray is demonstrated via validation against X-Ray data. Turbulence modeling approaches are compared for GDI simulations with dynamic mesh motion, with results validated against previously available experimental data. A new model for turbulent mixing is discussed. Code performance is thoroughly tested, with new mesh motion techniques suggested to improve scaling. Finally, a new workflow is developed for incorporating X-Ray scanned geometries into moving-needle GDI simulations, with full-duration injection events successfully simulated for both sub-cooled and flash-boiling conditions.
23

Eulerian on Lagrangian Cloth Simulation

Piddington, Kyle C 01 June 2017 (has links)
This thesis introduces a novel Eulerian-on-Lagrangian (EoL) approach for simulating cloth. This approach allows for the simulation of traditionally difficult cloth scenarios, such as draping and sliding cloth over sharp features like the edge of a table. A traditional Lagrangian approach models a cloth as a series of connected nodes. These nodes are free to move in 3d space, but have difficulty with sliding over hard edges. The cloth cannot always bend smoothly around these edges, as motion can only occur at existing nodes. An EoL approach adds additional flexibility to a Lagrangian approach by constructing special Eulerian on Lagrangian nodes (EoL Nodes), where cloth material can pass through a fixed point. On contact with the edge of a box, EoL nodes are introduced directly on the edge. These nodes allow the cloth to bend exactly at the edge, and pass smoothly over the area while sliding. Using this ‘Eulerian-on-Lagrangian’ discretization, a set of rules for introducing and constraining EoL Nodes, and an adaptive remesher, This simulator allows cloth to move in a sliding motion over sharp edges. The current implementation is limited to cloth collision with static boxes, but the method presented can be expanded to include contact with more complicated meshes and dynamic rigid bodies.
24

Hamiltonovská a termodynamická teorie pevných látek a tekutin / Hamiltonian and thermodynamic theory of solids and fluids

Sýkora, Martin January 2019 (has links)
The standard approach to modelling mechanics of continuum based on bal- ances of mass, momentum, angular momentum and energy is a very powerful tool. However, there is no connection between that and the Hamiltonian mechanics, that superbly describes kinematics of isolated particles. Thus, the two topics are rather isolated. Nevertheless, there is another approach to continuum mechan- ics - a one, whose reversible part is based on Hamiltonian mechanics, while the irreversible is generated by a dissipation potential. This framework, called GENERIC, is thus an interesting bridge between con- tinuous and discrete systems. In this thesis, we present the GENERIC framework applied to a continuous body, derive the governing equations and compare them to the standard theory. Both analytical and numerical solutions to a decent range of model examples are presented and analysed.
25

Generalized Eulerian-Lagrangian finite element methods for nonlinear dynamic problems

Kurniawan, Antonius S. January 1990 (has links)
No description available.
26

Dynamic Modeling of Rankine Cycle using Arbitrary Lagrangian Eulerian Method

Ranade, Vishakhdutt 16 June 2017 (has links)
No description available.
27

A finite element method for ring rolling processes

Dewasurendra, Lohitha January 1998 (has links)
No description available.
28

A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dam break

Zheng, X-G., Pu, Jaan H., Chen, R-D., Liu, X-N., Shao, Songdong 01 May 2016 (has links)
Yes / Large amount of sediment deposits in the reservoir area can cause dam break, which not only leads to an immeasurable loss to the society, but also the sediments from the reservoir can be transported to generate further problems in the downstream catchment. This study aims to investigate the short-to-long term sediment transport and channel meandering process under such a situation. A coupled explicit-implicit technique based on the Euler-Lagrangian method (ELM) is used to solve the hydrodynamic equations, in which both the small and large time steps are used separately for the fluid and sediment marching. The main feature of the model is the use of the Characteristic-Based Split (CBS) method for the local time step iteration to correct the ELM traced lines. Based on the solved flow field, a standard Total Variation Diminishing (TVD) finite volume scheme is applied to solve the sediment transportation equation. The proposed model is first validated by a benchmark dambreak water flow experiment to validate the efficiency and accuracy of ELM modelling capability. Then an idealized engineering dambreak flow is used to investigate the long-term downstream channel meandering process with nonuniform sediment transport. The results showed that both the hydrodynamic and morphologic features have been well predicted by the proposed coupled model. / This research work is supported by Sichuan Science and Technology Support Plan (2014SZ0163), Start-up Grant for the Young Teachers of Sichuan University (2014SCU11056), and Open Research Fund of the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKLH 1409; 1512).
29

Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature / Utilisation de simulations aux grandes échelles à partir d'images médicales pour l'étude de l'écoulement intracardiaque et de sa nature turbulente

Chnafa, Christophe 21 November 2014 (has links)
Le premier objectif de cette thèse est de générer et d'analyser une base de données pour l'écoulement intracardiaque dans des géométries réalistes. Dans ce but, une stratégie couplant simulation numérique et imagerie médicale est appliquée à un cœur gauche pathologique et à un cœur gauche sain. Le second objectif est d'illustrer comment cette base de données peut être analysée afin de mieux comprendre l'écoulement intracardiaque, en portant une attention particulière aux caractéristiques instationnaires de l'écoulement et à sa nature turbulente. Une chaîne numérique pour simuler l'écoulement dans des géométries spécifiques au patient est tout d'abord présentée. La cavité cardiaque et ses mouvements sont extraits à partir d'images médicales à l'aide d'un algorithme de recalage d'image afin d'obtenir le domaine de calcul. Les équations qui régissent l'écoulement sont écrites dans le cadre d'un maillage se déformant au cours du temps (approche arbitrairement Lagrangienne ou Eulérienne). Les valves cardiaques sont modélisées à l'aide de frontières immergées. L'application de cette chaîne numérique à deux cœurs gauches, l'un pathologique, l'autre sain est ensuite détaillée. L'écoulement sanguin est caractérisé par sa nature transitoire, donnant un écoulement complexe et cyclique. Il est montré que l'écoulement n'est ni laminaire, ni pleinement turbulent, justifiant a posteriori l'utilisation de simulation aux grandes échelles. Le développement instationnaire de la turbulence est analysé à l'aide de l'écoulement moyenné sur un nombre suffisant de cycles cardiaques. Les statistiques de l'écoulement, l'énergie turbulente, la production de turbulence et une analyse spectrale sont notamment présentées. Une étude Lagrangienne est aussi effectuée en utilisant des statistiques calculées à l'aide de particules ensemencées dans l'écoulement. En plus des caractéristiques habituellement rapportées, ce travail met en évidence le caractère perturbé et transitoire de l'écoulement, tout en identifiant les mécanismes de production de la turbulence. / The first objective of this thesis is to generate and analyse CFD-based databases for the intracardiac flow in realistic geometries. To this aim, an image-based CFD strategy is applied to both a pathological and a healthy human left hearts. The second objective is to illustrate how the numerical database can be analysed in order to gain insight about the intracardiac flow, mainly focusing on the unsteady and turbulent features. A numerical framework allowing insight in fluid dynamics inside patient-specific human hearts is first presented. The heart cavities and their wall dynamics are extracted from medical images, with the help of an image registration algorithm, in order to obtain a patient-specific moving numerical domain. Flow equations are written on a conformal moving computational domain, using an Arbitrary Lagrangian-Eulerian framework. Valves are modelled using immersed boundaries.Application of this framework to compute flow and turbulence statistics in both a realistic pathological and a realistic healthy human left hearts is presented. The blood flow is characterized by its transitional nature, resulting in a complex cyclic flow. Flow dynamics is analysed in order to reveal the main fluid phenomena and to obtain insights into the physiological patterns commonly detected. It is demonstrated that the flow is neither laminar nor fully turbulent, thus justifying a posteriori the use of Large Eddy Simulation.The unsteady development of turbulence is analysed from the phase averaged flow, flow statistics, the turbulent stresses, the turbulent kinetic energy, its production and through spectral analysis. A Lagrangian analysis is also presented using Lagrangian particles to gather statistical flow data. In addition to a number of classically reported features on the left heart flow, this work reveals how disturbed and transitional the flow is and describes the mechanisms of turbulence production.
30

A Polydispersed Gaussian-Moment Model for Polythermal, Evaporating, and Turbulent Multiphase Flow Applications

Allard, Benoit 06 April 2023 (has links)
A novel higher-order moment-closure method is applied for the Eulerian treatment of gas-particle multiphase flows characterized by a dilute polydisperse and polythermal particle phase. Based upon the polydisperse Gaussian-moment model (PGM) framework, the proposed model is derived by applying an entropy-maximization moment-closure formulation to the transport equation of the particle-number density function, which is equivalent to the Williams-Boltzmann equation for droplet sprays. The resulting set of first-order robustly-hyperbolic balance laws include a direct treatment for local higher-order statistics such as co-variances between particle distinguishable properties (i.e., diameter and temperature) and particle velocity. Leveraging the additional distinguishing variables, classical hydrodynamic droplet evaporation theory is considered to describe unsteady droplet vaporization. Further, studying turbulent multiphase flow theory, a first-order hyperbolicity maintaining approximation to turbulent flow diffusion-inertia effects is proposed. Investigations into the predictive capabilities of the model are evaluated relative to Lagrangian-based solutions for a range of flows, including aerosol dispersion and fuel-sprays. Further, the model is implemented in a massively parallel discontinuous-Galerkin framework. Validation of the proposed turbulence coupling model is subsequently performed against experimental data, and a qualitative analysis of the model is given for a qualitative liquid fuel-spray problem.

Page generated in 0.0611 seconds