• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A HYBRID DEVICE APPROACH TO HIGH PERFORMANCE IN ORGANIC LIGHT-EMITTING DIODES

LI, WEIXIN 20 July 2006 (has links)
No description available.
2

Directional organic light-emitting diodes using photonic microstructure

Zhang, Shuyu January 2014 (has links)
This thesis describes investigations into the optical and device design of organic light-emitting diodes (OLEDs) with the aim of exploring the factors controlling the spatial emission pattern of OLEDs and developing novel OLEDs with directional emission by applying wavelength-scale photonic microstructure. The development of directional OLEDs was broken down into two steps: the development of efficient narrow linewidth OLEDs and the integration of wavelength-scale photonic microstructures into narrow linewidth OLEDs. The narrow linewidth OLEDs were developed using europium (Eu) complexes. The electrical optimisation of solution-processed Eu-based OLEDs using commercially available materials was investigated. The optimised Eu-based OLEDs gave an external quantum efficiency of 4.3% at a display brightness of 100 cd/m². To our knowledge, this is the highest efficiency reported for solution-processed Eu-based OLED devices, and the efficiency roll-off has been reduced compared with other reported references. Photonic microstructures were applied to develop directional OLEDs using the efficient Eu-based OLEDs. Two contrasting strategies were used. One was to embed photonic microstructures into Eu-based OLEDs, the other was to couple photonic microstructures externally onto the devices. The microstructured devices developed by the former strategy boosted the emitted power in desired angles in both s- and p-polarisations and doubled the fraction of emission in an angle range of 4⁰. The devices developed by the external coupling strategy achieved even higher directionality and the out-coupled emission was a confined beam with easy control of beam steering. Around 90% of the emitted power was confined in an angular range of 20⁰ in the detection plane. The optical properties can be optimised independently without compromising the electrical properties of devices, which gives major advantages in terms of effectiveness and versatility. Optical models were also developed to investigate the out-coupling mechanism of various trapped modes and develop OLEDs with stronger directionality.
3

Fabricação e caracterização de OLEDs utilizando novos transportadores de buracos e novos emissores de luz para aplicações em eletrônica orgânica

Marins, Jefferson da Silva 19 January 2018 (has links)
Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-05-10T11:48:36Z No. of bitstreams: 1 jeffersondasilvamartins.pdf: 3798520 bytes, checksum: 36b404dfc17447ab2b47b8addd04eceb (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-05-22T15:42:34Z (GMT) No. of bitstreams: 1 jeffersondasilvamartins.pdf: 3798520 bytes, checksum: 36b404dfc17447ab2b47b8addd04eceb (MD5) / Made available in DSpace on 2018-05-22T15:42:34Z (GMT). No. of bitstreams: 1 jeffersondasilvamartins.pdf: 3798520 bytes, checksum: 36b404dfc17447ab2b47b8addd04eceb (MD5) Previous issue date: 2018-01-19 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / O projeto contínuo de desenvolvimento de pesquisas em novos materiais orgânicos mais eficientes, mais puros e com boa estabilidade térmica e morfológica é fundamental para a aplicação em novos dispositivos orgânicos. Nesse contexto, o objetivo dessa tese é a fabricação e caracterização de novos dispositivos orgânicos emissores de luz (OLEDs). Essa pesquisa foi desenvolvida com duas abordagens e aplicações distintas. Na primeira, utiliza-se uma nova classe de derivados de xanteno (XD) como materiais transportadores de buracos, e na segunda, apresenta-se dois novos complexos de Európio como materiais emissores de luz. Na aplicação dos XD como camada transportadora de buracos (CTB) foram fabricados OLEDs bicamada, utilizando-se o material comercial Alq3 como emissor de luz. Os resultados desse estudo foram comparados com dispositivos de referência fabricados com o material comercial α-NPD no lugar dos XD. Todos os dispositivos baseados nos XD apresentaram uma eficiência de corrente mais elevada quando comparados com dispositivos de referência α-NPD. Um estudo teórico e experimental sobre a mobilidade de buracos dos XD e α-NPD mostram que todos os XD possuem mobilidade de buraco mais elevada que o material comercial. A mobilidade de buraco mais elevado na camada dos XD proporcionou um melhor equilíbrio de buracos e elétrons e, portanto, maior recombinação, resultando em eficiência aprimorada. Na segunda parte deste trabalho, foram estudados dois complexos de Európio como emissores de luz na região do vermelho do espectro visível. Os complexos de Európio, [Eu(btfa)3(dmbpy)2] e [Eu (TTA)3(PhenSe)], apresentaram as transições características ⁵D₀ → ⁷FJ (J = 0-4), em solução e em filme fino evaporado termicamente. Com o complexo [Eu(btfa)3(dmbpy)2] foram fabricados dispositivos com duas configurações de diferentes e, embora os OLEDs tenham apresentado uma banda larga devido à contribuição do Alq3, demonstrou-se a fabricação de um OLED eficiente. Já o complexo [Eu (TTA)3(PhenSe)] as eletroluminescências dos dispositivos apresentaram uma banda larga centrada em 580 nm, dificultando assim a observação das transições ⁵D₀ → ⁷FJ (J = 0,1). / The continuing research project to develop new organic materials that are more efficient, purest and with a good morphological and thermal stability is essential to apply them to new organic devices. Therefore, the aim of this thesis is the fabrication and the characterization of organic electroluminescent devices (OLEDs). This research was developed based on two distinctive approaches. At first, it was used a new xanthene derivative (XD) class as a hole transporting material and, secondly, it is shown two new Europium complex as light emitters. The use of XD as hole transporting layer (HTL) was made to fabricated bilayers OLEDs using the commercial material Alq3 as light emitters. Their results were compared to the reference device previously fabricated with the commercial material α-NPD. All XD devices presented a higher current efficiency when compared to the α-NPD reference device. A theoretical and experimental study of the XD and α-NPD holes mobility showed that all XD has a higher hole mobility than the commercial material. The higher hole mobility of the XD layer resulted in a better balance between hole and electrons and consequently, in a higher number of combinations, resulting in devices with improved efficiency. At the second part of this study, it was studied two Europium complexes as red-light emitters. The Europium complex, [Eu(btfa)3(dmbpy)] and [Eu(TTA)3(PhenSe)], showed the transitions characteristic of ⁵D₀ → ⁷FJ (J = 0-4) in solution and in a thermal evaporated thin film. The [Eu(btfa)3(dmbpy)] complex was used to fabricate devices with two different configurations and, although the OLEDs have shown a wide band due to the Alq3 contribution, the OLEDs presented good efficiency. In contrast, the electroluminescence of the [Eu (TTA)3(PhenSe)] complex based devices showed a wide band centered in 580 nm, in this case, covering the narrow ⁵D₀ → ⁷FJ (J = 0,1) transitions.

Page generated in 0.0673 seconds