1 |
Homogenization of Partial Differential Equations using Multiscale Convergence MethodsJohnsen, Pernilla January 2021 (has links)
The focus of this thesis is the theory of periodic homogenization of partial differential equations and some applicable concepts of convergence. More precisely, we study parabolic problems exhibiting both spatial and temporal microscopic oscillations and a vanishing volumetric heat capacity type of coefficient. We also consider a hyperbolic-parabolic problem with two spatial microscopic scales. The tools used are evolution settings of multiscale and very weak multiscale convergence, which are extensions of, or closely related to, the classical method of two-scale convergence. The novelty of the research in the thesis is the homogenization results and, for the studied parabolic problems, adapted compactness results of multiscale convergence type.
|
2 |
Selected Topics in HomogenizationPersson, Jens January 2012 (has links)
The main focus of the present thesis is on the homogenization of some selected elliptic and parabolic problems. More precisely, we homogenize: non-periodic linear elliptic problems in two dimensions exhibiting a homothetic scaling property; two types of evolution-multiscale linear parabolic problems, one having two spatial and two temporal microscopic scales where the latter ones are given in terms of a two-parameter family, and one having two spatial and three temporal microscopic scales that are fixed power functions; and, finally, evolution-multiscale monotone parabolic problems with one spatial and an arbitrary number of temporal microscopic scales that are not restricted to be given in terms of power functions. In order to achieve homogenization results for these problems we study and enrich the theory of two-scale convergence and its kins. In particular the concept of very weak two-scale convergence and generalizations is developed, and we study an application of this convergence mode where it is employed to detect scales of heterogeneity. / Huvudsakligt fokus i avhandlingen ligger på homogeniseringen av vissa elliptiska och paraboliska problem. Mer precist så homogeniserar vi: ickeperiodiska linjära elliptiska problem i två dimensioner med homotetisk skalning; två typer av evolutionsmultiskaliga linjära paraboliska problem, en med två mikroskopiska skalor i både rum och tid där de senare ges i form av en tvåparameterfamilj, och en med två mikroskopiska skalor i rum och tre i tid som ges i form av fixa potensfunktioner; samt, slutligen, evolutionsmultiskaliga monotona paraboliska problem med en mikroskopisk skala i rum och ett godtyckligt antal i tid som inte är begränsade till att vara givna i form av potensfunktioner. För att kunna uppnå homogeniseringsresultat för dessa problem så studerar och utvecklar vi teorin för tvåskalekonvergens och besläktade begrepp. Speciellt så utvecklar vi begreppet mycket svag tvåskalekonvergens med generaliseringar, och vi studerar en tillämpningav denna konvergenstyp där den används för att detektera förekomsten av heterogenitetsskalor.
|
Page generated in 0.1379 seconds