1 |
Well-posedness and causality for a class of evolutionary inclusionsTrostorff, Sascha 05 December 2011 (has links) (PDF)
We study a class of differential inclusions involving maximal monotone relations, which cover a huge class of problems in mathematical physics. For this purpose we introduce the time derivative as a continuously invertible operator in a suitable Hilbert space. It turns out that this realization is a strictly monotone operator and thus, the question on existence and uniqueness can be answered by well-known results in the theory of maximal monotone relations. Furthermore, we show that the resulting solution operator is Lipschitz-continuous and causal, which is a natural property of evolutionary processes. Finally, the results are applied to a system of partial differential equations and inclusions, which describes the diffusion of a compressible fluid through a saturated, porous, plastically deforming media, where certain hysteresis phenomena are modeled by maximal montone relations.
|
2 |
Well-posedness and causality for a class of evolutionary inclusionsTrostorff, Sascha 25 October 2011 (has links)
We study a class of differential inclusions involving maximal monotone relations, which cover a huge class of problems in mathematical physics. For this purpose we introduce the time derivative as a continuously invertible operator in a suitable Hilbert space. It turns out that this realization is a strictly monotone operator and thus, the question on existence and uniqueness can be answered by well-known results in the theory of maximal monotone relations. Furthermore, we show that the resulting solution operator is Lipschitz-continuous and causal, which is a natural property of evolutionary processes. Finally, the results are applied to a system of partial differential equations and inclusions, which describes the diffusion of a compressible fluid through a saturated, porous, plastically deforming media, where certain hysteresis phenomena are modeled by maximal montone relations.
|
3 |
A note on a two-temperature model in linear thermoelasticityMukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M. 29 October 2019 (has links)
We discuss the so-called two-temperature model in linear thermoelasticity and provide a Hilbert space framework for proving well-posedness of the equations under consideration. With the abstract perspective of evolutionary equations, the two-temperature model turns out to be a coupled system of the elastic equations and an abstract ordinary differential equation (ODE). Following this line of reasoning, we propose another model which is entirely an abstract ODE.We also highlight an alternative method for a two-temperature model, which might be of independent interest.
|
4 |
On some models in linear thermo-elasticity with rational material lawsMukhopadhyay, S., Picard, R., Trostorff, S., Waurick, M. 27 September 2019 (has links)
In the present work, we shall consider some common models in linear thermo-elasticity within a common structural framework. Due to the flexibility of the structural perspective we will obtain well-posedness results for a large class of generalized models allowing for more general material properties such as anisotropies, inhomogeneities, etc.
|
Page generated in 0.1377 seconds