• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fadenmoduln über Ãn und Cluster-Kombinatorik / String modules over Ãn and cluster combinatorics

Warkentin, Matthias 22 August 2012 (has links) (PDF)
Inspired by work of Hubery [Hub] and Fomin, Shapiro and Thurston [FST06] related to cluster algebras, we construct a bijection between certain curves on a cylinder and the string modules over a path algebra of type Ãn. We show that under this bijection irreducible maps and the Auslander-Reiten translation have a geometric interpretation. Furthermore we prove that the dimension of extension groups can be expressed in terms of intersection numbers. Finally we explain the connection to cluster algebras and apply our results to describe the exchange graph in type Ãn. / Angeregt durch Arbeiten zu Cluster-Algebren von Hubery [Hub] und Fomin, Shapiro und Thurston [FST06] konstruieren wir eine Bijektion zwischen gewissen Kurven auf einem Zylinder und den Fadenmoduln über einer Wege-Algebra vom Typ Ãn. Wir zeigen, daß unter dieser Bijektion sowohl irreduzible Abbildungen als auch die Auslander-Reiten-Verschiebung eine geometrische Interpretation haben. Weiterhin beweisen wir, daß sich die Dimension der Erweiterungsgruppen mittels Anzahlen von Schnittpunkten ausdrücken läßt. Schließlich erklären wir die Verbindung zu Cluster-Algebren und verwenden unsere Ergebnisse um den Austauschgraph im Typ Ãn zu beschreiben.
2

Fadenmoduln über Ãn und Cluster-Kombinatorik / String modules over Ãn and cluster combinatorics

Warkentin, Matthias 22 December 2008 (has links)
Inspired by work of Hubery [Hub] and Fomin, Shapiro and Thurston [FST06] related to cluster algebras, we construct a bijection between certain curves on a cylinder and the string modules over a path algebra of type Ãn. We show that under this bijection irreducible maps and the Auslander-Reiten translation have a geometric interpretation. Furthermore we prove that the dimension of extension groups can be expressed in terms of intersection numbers. Finally we explain the connection to cluster algebras and apply our results to describe the exchange graph in type Ãn. / Angeregt durch Arbeiten zu Cluster-Algebren von Hubery [Hub] und Fomin, Shapiro und Thurston [FST06] konstruieren wir eine Bijektion zwischen gewissen Kurven auf einem Zylinder und den Fadenmoduln über einer Wege-Algebra vom Typ Ãn. Wir zeigen, daß unter dieser Bijektion sowohl irreduzible Abbildungen als auch die Auslander-Reiten-Verschiebung eine geometrische Interpretation haben. Weiterhin beweisen wir, daß sich die Dimension der Erweiterungsgruppen mittels Anzahlen von Schnittpunkten ausdrücken läßt. Schließlich erklären wir die Verbindung zu Cluster-Algebren und verwenden unsere Ergebnisse um den Austauschgraph im Typ Ãn zu beschreiben.
3

Exchange Graphs via Quiver Mutation

Warkentin, Matthias 02 October 2014 (has links) (PDF)
Inspired by Happel's question, whether the exchange graph and the simplicial complex of tilting modules over a quiver algebra are independent from the multiplicities of multiple arrows in the quiver, we study quantitative aspects of Fomin and Zelevinsky's quiver mutation rule. Our results turn out to be very useful in the mutation-infinite case for understanding combinatorial structures as the cluster exchange graph or the simplicial complex of tilting modules, which are governed by quiver mutation. Using a class of quivers we call forks we can show that any such quiver yields a tree in the exchange graph. This allows us to provide a good global description of the exchange graphs of arbitrary mutation-infinite quivers. In particular we show that the exchange graph of an acyclic quiver is a tree if (and in fact only if) any two vertices are connected by at least two arrows. Furthermore we give classification results for the simplicial complexes and thereby obtain a partial positive answer to Happel's question. Another consequence of our findings is a confirmation of Unger's conjecture about the infinite number of components of the tilting exchange graph in all but finitely many cases. Finally we generalise and conceptualise our results by introducing what we call "polynomial quivers", stating several conjectures about "polynomial quiver mutation", and giving proofs in special cases.
4

Exchange Graphs via Quiver Mutation

Warkentin, Matthias 11 June 2014 (has links)
Inspired by Happel's question, whether the exchange graph and the simplicial complex of tilting modules over a quiver algebra are independent from the multiplicities of multiple arrows in the quiver, we study quantitative aspects of Fomin and Zelevinsky's quiver mutation rule. Our results turn out to be very useful in the mutation-infinite case for understanding combinatorial structures as the cluster exchange graph or the simplicial complex of tilting modules, which are governed by quiver mutation. Using a class of quivers we call forks we can show that any such quiver yields a tree in the exchange graph. This allows us to provide a good global description of the exchange graphs of arbitrary mutation-infinite quivers. In particular we show that the exchange graph of an acyclic quiver is a tree if (and in fact only if) any two vertices are connected by at least two arrows. Furthermore we give classification results for the simplicial complexes and thereby obtain a partial positive answer to Happel's question. Another consequence of our findings is a confirmation of Unger's conjecture about the infinite number of components of the tilting exchange graph in all but finitely many cases. Finally we generalise and conceptualise our results by introducing what we call "polynomial quivers", stating several conjectures about "polynomial quiver mutation", and giving proofs in special cases.

Page generated in 0.0732 seconds