• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 9
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 83
  • 40
  • 34
  • 23
  • 15
  • 15
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of excitotoxicity induced by kainic acid and N-Methyl-D-Aspartate in adult rat retina. / CUHK electronic theses & dissertations collection

January 1999 (has links)
Sun Qiang. / "December 1999." / Thesis (Ph.D.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (p. 119-139). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web.
12

Neuropharmacology of kainate receptor-mediated excitotoxicity

Giardina, Sarah Filippa, 1974- January 2001 (has links)
Abstract not available
13

Investigation of the Mechanism of Substrate Transport by the Glutamate Transporter EAAC1

Barcelona, Stephanie Suazo 01 January 2007 (has links)
The activity of glutamate transporters is essential for the temporal and spatial regulation of the neurotransmitter concentration in the synaptic cleft which is critical for proper neuronal signaling. Because of their role in controlling extracellular glutamate concentrations, dysfunctional glutamate transporters have been implicated in several neurodegenerative diseases and psychiatric disorders. Therefore, investigating the mechanism of substrate transport by these transporters is essential in understanding their behavior when they malfunction. A bacterial glutamate transporter homologue has been successfully crystallized revealing the molecular architecture of glutamate transporters. However, many important questions remain unanswered. In this thesis, I will address the role of D439 in the binding of Na+, and I will identify other electrogenic steps that contribute to the total electrogenicity of the transporter cycle. The role of D439 in the binding of Na+ to the transporter was explored previously in this lab. While it was proposed that the effect of D439 in Na+ binding is indirect, the results described in this thesis provides added support to this work. Here, I will show that the D439 mutation changed the pharmacology of EAAC1 such that THA was converted from a transported substrate to a competitive inhibitor. I will also show that Na+ binding to the substrate-bound mutant transporter occurred with the same affinity as that of Na+ to the substrate-bound wild-type transporter. Therefore, based on these results, D439 is not directly involved in the binding of Na+ to the substrate-bound transporter, but that its effect is rather indirect through changing the substrate binding properties. Na+ binding steps to the empty transporter and to the glutamate-bound EAAC1 contribute only 20% of the total electrogenicity of the glutamate transporter reactions cycle. While K+-induced relocation has been proposed to be electrogenic, there is no experimental evidence that supports it. In this work, I will show that the K+-induced relocation of the empty transporter is electrogenic. Moreover, the results in this work show that the K+-dependent steps are slower than the steps associated with the Na+/glutamate translocation suggesting that the K+-induced relocation determines the transporter?s properties at steady state.
14

The molecular mechanisms of the loss of glial glutamate transporter EAAT2 in neurodegenerative diseases

Tian, Guilian. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 140-158).
15

Comparison of excitatory synapses in diverse cortical areas of the mouse and monkey

Hsu, Alexander 18 June 2016 (has links)
Diversity in excitatory synaptic transmission by cortical pyramidal neurons give rise to the possibility of different neuronal networks that mediate distinct cortical function. Understanding heterogeneity of excitatory input to pyramidal neurons across distinct cortical areas and species will provide insight into cortical specialization and, ultimately, selective vulnerability of cortical areas to neuropathology in humans. In a previous study in our laboratory (Medalla and Luebke, 2015), significant differences in the ultrastructural features of excitatory asymmetric synapses in layers 2-3 (L2-3) neuropil were found between two distinct cortical areas in the rhesus monkey – primary sensory visual (V1) versus higher-order lateral prefrontal (LPFC) cortices. Here, we used serial sectioning electron microscopy to determine whether these differences in synaptic elements also exist in the corresponding visual (V1) and frontal (FC) cortices in the mouse. Multiple analyses of L2-3 neuropil of FC and V1 in mouse revealed three fundamental principles. First, in contrast to the diverse synapses in monkey LPFC and V1, asymmetric axospinous synapses in L2-3 neuropil of mouse FC and V1 are remarkably homogenous with regard to presynaptic and postsynaptic entities. Second, asymmetric axospinous synapses in L2-3 neuropil of mouse V1 resemble that of monkey V1 in postsynaptic entities, but differ in presynaptic entity. Third, asymmetric axospinous synapses in L2-3 neuropil of mouse FC and monkey LPFC differ substantially in both presynaptic and postsynaptic entities. These findings have broad implications for extrapolation of excitatory synaptic transmission data from one cortical area to another, and also from one species to another.
16

Serotonin Modulates Synaptic Transmission in Immature Rat Ventrolateral Medulla Neurons in Vitro

Hwang, L. L., Dun, N. J. 01 July 1999 (has links)
Patch-clamp recordings in whole-cell configuration were made from ventrolateral medulla neurons of brainstem slices from 8-12-day-old rats. 5- Hydroxytryptamine (3-30 μM) concentration-dependently suppressed excitatory and inhibitory postsynaptic currents evoked by focal stimulation. An augmentation of inhibitory synaptic currents by 5-hydroxytryptamine was noted in a small number of neurons. 5-Hydroxytryptamine depressed synaptic currents with or without causing a significant change in holding currents and membrane conductances; the inward or outward currents induced by exogenously applied glutamate or GABA/glycine were also not significantly changed by 5- hydroxytryptamine. In paired-pulse paradigms designed to evaluate a presynaptic site of action, 5-hydroxytryptamine suppressed synaptic currents but enhanced the paired-pulse facilitation. 5-Hydroxytryptamine reduced the frequency of miniature excitatory postsynaptic currents without significantly affecting the amplitude. 5-Carboxamidotryptamine, 8-hydroxy-2(di-n- propylamino)tetralin, sumatriptan and N-(3-trifluoromethylphenyl)piperazine which exhibit 5-hydroxytryptamine1 receptor agonist activity, depressed synaptic currents with different potencies, with 5-carboxamidotryptamine being the most potent. The non-selective 5-hydroxytryptamine1 receptor antagonist pindolol attenuated the presynaptic effect of 5-hydroxytryptamine, whereas the 5-hydroxytryptamine(1A) antagonist pindobind-5- hydroxytryptamine(1A) and 5-hydroxytryptamine2 receptor antagonist ketanserin were ineffective. Our results indicate that 5-hydroxytryptamine suppressed synaptic transmission in ventrolateral medulla neurons by activating presynaptic 5-hydroxytryptamine1 receptors, probably the 5- hydroxytryptamine(1B)/5-hydroxytryptamine(1D) subtype. In addition, 5- hydroxytryptamine augmented inhibitory synaptic currents in a small number of neurons the site and mechanism of this potentiating action are not known.
17

Endomorphins: Localization, Release and Action on Rat Dorsal Horn Neurons

Dun, N. J., Dun, S. L., Wu, S. Y., Williams, C. A., Kwok, E. H. 01 January 2000 (has links)
Endomorphin (Endo) 1 and 2, two tetrapeptides isolated from the bovine and human brain, have been proposed to be the endogenous ligand for the μ- opiate receptor. A multi-disciplinary study was undertaken to address the issues of localization, release and biological action of Endo with respect to the rat dorsal horn. First, immunohistochemical studies showed that Endo-1- or Endo-2-like immunoreactivity (Endo-1- or Endo-2-LI) is selectively expressed in fiber-like elements occupying the superficial layers of the rat dorsal horn, which also exhibit a high level of μ-opiate receptor immunoreactivity. Second, release of immunoreactive Endo-2-like substances (irEndo) from the in vitro rat spinal cords upon electrical stimulation of dorsal root afferent fibers was detected by the immobilized antibody microprobe technique. The site of release corresponded to laminae I and II where the highest density of Endo-2-LI fibers was localized. Lastly, whole- cell patch clamp recordings from substantia gelatinosa (SG) neurons of rat lumbar spinal cord slices revealed two distinct actions of exogenous Endo-1 and Endo-2: (1) depression of excitatory and/or inhibitory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (2) hyperpolarization of SG neurons. These two effects were prevented by the selective μ-opiate receptor antagonist β-funaltrexamine. The localization of endomorphin-positive fibers in superficial layers of the dorsal horn and the release of irEndo upon stimulation of dorsal root afferents together with the observation that Endo inhibits the activity of SG neurons by interacting with μ-opiate receptors provide additional support of a role of Endo as the endogenous ligand for the μ-opiate receptor in the rat dorsal horn.
18

PREFRONTAL CORTEX IN STRESS RELATED DISORDERS:CHARACTERIZING THE ROLE OF INHIBITORY GABAERGIC PARVALBUMIN INTERNEURONS IN STRESS RELATED ILLNESSES

Nawreen, Nawshaba 23 August 2022 (has links)
No description available.
19

Irregular behavior in an excitatory-inhibitory network

Park, Choongseok 16 July 2007 (has links)
No description available.
20

DISRUPTIONS IN THE REGULATION OF EXTRACELLULAR GLUTAMATE IN THE RAT CENTRAL NERVOUS SYSTEM AFTER DIFFUSE BRAIN INJURY

Hinzman, Jason Michael 01 January 2012 (has links)
Glutamate, the predominant excitatory neurotransmitter in the central nervous system, is involved in almost all aspects of neurological function including cognition, motor function, memory, learning, decision making, and neuronal plasticity. For normal neurological function, glutamate signaling must be properly regulated. Disrupted glutamate regulation plays a pivotal role in the acute pathophysiology of traumatic brain injury (TBI), disrupting neuronal signaling, initiating secondary injury cascades, and producing excitotoxicity. Increases in extracellular glutamate have been correlated with unfavorable outcomes in TBI survivors, emphasizing the importance of glutamate regulation. The aim of this thesis was to examine disruptions in the regulation of extracellular glutamate after experimental TBI. In these studies, we used glutamate-sensitive microelectrode arrays (MEAs) to examine the regulation of extracellular glutamate two days after diffuse brain injury. First, we examined which brain regions were vulnerable to post-traumatic increases in extracellular glutamate. We detected significant increases in extracellular glutamate in the dentate gyrus and striatum, which correlated to the severity of brain injury. Second, we examined the regulation of extracellular glutamate by neurons and glia to determine the mechanisms responsible for post-traumatic increases in extracellular glutamate. In the striatum of brain-injured rats, we detected significant disruptions in release of glutamate by neurons and significant decreases in the removal of glutamate from the extracellular space by glia. Third, we examined if a novel therapeutic strategy, a viral-vector mediated gene delivery approach, could improve the regulation of extracellular glutamate. Infusion of an adeno-associated virus expressing a glutamate transporter into the rat striatum produced significant improvements in glutamate clearance, identifying a novel strategy to reduce excitotoxicity. Lastly, we examined the translational potential of MEAs as novel neuromonitoring device for clinical TBI research. Overall, these studies have demonstrated the translational potential of MEAs to aid in the diagnosis and treatment of TBI survivors.

Page generated in 0.0371 seconds