1 |
Análise energética e exergética de uma bomba de calor para desumidificação e aquecimento do ar / Energy and exergy analyses of a heat pump for air dehumidification and heatingMaia, Nayana Lôbo 22 December 2014 (has links)
Made available in DSpace on 2015-05-08T14:59:59Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2959972 bytes, checksum: 6060cb1bb9ff1ddc36d963e12be8acd7 (MD5)
Previous issue date: 2014-12-22 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The heat pump is a refrigeration unit with several applications in commercial,
industrial and residential sectors. The heat pump is basically constituted of five
components: compressor, condenser, expansion device, evaporator and fan. A heat pump
was developed herein for air dehumidification and heating at moderate temperatures for
drying of thermosensitive products. A thermodynamic model was developed to study the
heat pump, based on the Law of Conservation of Mass and First and Second Laws of
Thermodynamics. Measurement instruments were installed to obtain the necessary
experimental data for the energy and exergy analysis. The experiments took place in
different days between the months of May and November of 2014. The experiment that
best represented the air dehumidification and heating was selected, due to an adequate
isentropic efficiency of 93%. A computational code was developed in the Engineering
Equation Solver software 9.0 (ESS 9.0) for the simulation of this study. Results obtained
via EES, through solution of the system of equations, were mass flow (air, condensed
water), heat transfer rates, COP, entropy generation rates, irreversibility rates, and exergy
variation. It was verified that the heat pump system is technically viable and provides
very satisfactory results: air was heated to a temperature of 51,7 ºC and dehumidified to
a 18,5% relative humidity. / A bomba de calor é uma máquina frigorífica com diversas aplicações nos setores
comercial, industrial e residencial. A bomba de calor é constituída basicamente por cinco
componentes: compressor, condensador, dispositivo de expansão, evaporador e
ventilador. Foi desenvolvida para este trabalho uma bomba de calor cuja finalidade é a
desumidificação e o aquecimento do ar a temperaturas moderadas para a secagem de
produtos termossensíveis. Para o estudo da bomba de calor em questão, foi desenvolvida
uma modelagem termodinâmica baseada na Lei da Conservação da Massa e Primeira e
Segunda Leis da Termodinâmica. Foram instalados instrumentos de medições para obter
experimentalmente os dados necessários para a análise energética e exergética. Os
experimentos ocorreram em dias alternados entre os meses de agosto e novembro de
2014. Foi selecionado o experimento que melhor representou os processos de
desumificação e aquecimento do ar por apresentar uma eficiência isentrópica adequada
de 93%. Desenvolveu-se um código computacional no software Engineering Equation
Solver 9.0 (EES 9.0) para a simulação do estudo. Os resultados obtidos via EES, através
da solução de um sistema de equações, foram vazão mássica (ar e água condensada), taxas
de transferência de calor, COP, taxas de geração de entropia, taxas de irreversibilidades
e variação de exergia. Foi verificado que o sistema da bomba de calor é tecnicamente
viável e fornece resultados bastante satisfatórios: ar aquecido a temperatura de 51,7ºC e
desumidificado a umidade relativa de 18,5%.
|
2 |
Design and evaluation of stationary polymer electrolyte fuel cell systemsWallmark, Cecilia January 2004 (has links)
The objectives of this doctoral thesis are to give a basisincluding methods for the development of stationary polymerelectrolyte fuel cell (PEFC) systems for combined heat andpower production. Moreover, the objectives include identifyingprerequisites, requirements and possibilities for PEFC systemsproducing heat and power for buildings in Sweden. The PEFCsystem is still in a pre-commercial state, but low emissionlevels, fast dynamics and high efficiencies are promisingcharacteristics. A thermodynamic model to simulate stationary PEFC systemshas been constructed and pinch technology and exergy analysesare utilised to design and evaluate the system. The finalsystem configuration implies a high total efficiency ofapproximately 98 % (LHV). A flexible test facility was built in connection with theresearch project to experimentally evaluate small-scalestationary PEFC systems at KTH. The research PEFC system hasextensive measurement equipment, a rigorous control system andallows fuel cell systems from approximately 0.2 to 4 kWel insize to be tested. The simulation models of the fuel processorand the fuel cell stack are verified with experimental datataken from the test facility. The initial evaluation andsimulation of the first residential installation of a PEFCsystem in Sweden is also reported. This PEFC system, fuelled bybiogas and hydrogen, is installed in an energy system alsoincluding a photovoltaic array, an electrolyser and hydrogenstorage. Technical aspects of designing a fuel cell system-basedenergy system, including storages and grid connections, whichprovides heat and power to a building are presented in thisthesis. As a basis for the technical and economic evaluations,exemplifying energy systems are constructed and simulated. Fuelcell system installations are predicted to be economicallyunviable for probable near-term conditions in Sweden. The mainfactor in the economic evaluations is the fuel price. However,fuel cell system installations are shown to have a higher fuelutilisation than the conventional method of energy supply. The methods presented in this thesis serve as a collectedbasis for continued research and development in the area. Keywords:Small-scale, stationary, fuel cell system,polymer electrolyte fuel cell, PEFC system, reformer,thermodynamic modelling, pinch technology, exergy analyses,system configuration, test facility, experiments, application,simulation, installation, energy system, energy storage, heatand power demand.
|
3 |
Design and evaluation of stationary polymer electrolyte fuel cell systemsWallmark, Cecilia January 2004 (has links)
<p>The objectives of this doctoral thesis are to give a basisincluding methods for the development of stationary polymerelectrolyte fuel cell (PEFC) systems for combined heat andpower production. Moreover, the objectives include identifyingprerequisites, requirements and possibilities for PEFC systemsproducing heat and power for buildings in Sweden. The PEFCsystem is still in a pre-commercial state, but low emissionlevels, fast dynamics and high efficiencies are promisingcharacteristics.</p><p>A thermodynamic model to simulate stationary PEFC systemshas been constructed and pinch technology and exergy analysesare utilised to design and evaluate the system. The finalsystem configuration implies a high total efficiency ofapproximately 98 % (LHV).</p><p>A flexible test facility was built in connection with theresearch project to experimentally evaluate small-scalestationary PEFC systems at KTH. The research PEFC system hasextensive measurement equipment, a rigorous control system andallows fuel cell systems from approximately 0.2 to 4 kWel insize to be tested. The simulation models of the fuel processorand the fuel cell stack are verified with experimental datataken from the test facility. The initial evaluation andsimulation of the first residential installation of a PEFCsystem in Sweden is also reported. This PEFC system, fuelled bybiogas and hydrogen, is installed in an energy system alsoincluding a photovoltaic array, an electrolyser and hydrogenstorage.</p><p>Technical aspects of designing a fuel cell system-basedenergy system, including storages and grid connections, whichprovides heat and power to a building are presented in thisthesis. As a basis for the technical and economic evaluations,exemplifying energy systems are constructed and simulated. Fuelcell system installations are predicted to be economicallyunviable for probable near-term conditions in Sweden. The mainfactor in the economic evaluations is the fuel price. However,fuel cell system installations are shown to have a higher fuelutilisation than the conventional method of energy supply.</p><p>The methods presented in this thesis serve as a collectedbasis for continued research and development in the area.</p><p><b>Keywords:</b>Small-scale, stationary, fuel cell system,polymer electrolyte fuel cell, PEFC system, reformer,thermodynamic modelling, pinch technology, exergy analyses,system configuration, test facility, experiments, application,simulation, installation, energy system, energy storage, heatand power demand.</p>
|
Page generated in 0.0635 seconds