• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 14
  • 10
  • 7
  • 4
  • 4
  • 4
  • 2
  • Tagged with
  • 144
  • 34
  • 26
  • 24
  • 24
  • 23
  • 22
  • 21
  • 19
  • 19
  • 18
  • 18
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Elucidation of the Role of the Exocyst Subunit Sec6p in Exocytosis: A Dissertation

Brewer, Daniel Niron 23 November 2009 (has links)
Trafficking of protein and lipid cargo through the secretory pathway in eukaryotic cells is mediated by membrane-bound vesicles. Secretory vesicles are targeted to sites of exocytosis on the plasma membrane in part by a conserved multi-subunit protein complex termed the exocyst. In addition to tethering vesicles to the plasma membrane, the exocyst complex and components therein may also add a layer of regulation by directly controlling assembly of the SNARE complex, which is required for membrane fusion, as well as other regulatory factors such as Sec1p. In the past, we have shown that Sec6p interacts with Sec9p in vivo and that that interaction retards binary SNARE complex formation in a SNARE assembly assay. Though many interactions have been mapped using in vitro methods, confirming them in vivoand placing them into the context of a complete model that accounts for all observed interactions (and lack of interactions) has proven difficult. In order to address these problems, I have studied the interactions between Sec6p and other factors involved in exocytosis at the plasma membrane via in vivo methods. My hypothesis was that Sec6p interaction with Sec9p and subsequent inhibition of SNARE complex assembly in vitro was an intermediate state and Sec6p was part of a set of cofactors that accelerated SNARE complex assembly in vivo. To test this hypothesis I showed that the interaction between the plasma membrane t-SNARE Sec9p and the yeast exocyst subunit Sec6p can be observed in vivoand designed point mutations to disrupt that interaction. Interestingly, I also showed that Sec6p:Sec9p interaction involves the free pool of Sec6p rather than the exocyst bound fraction of Sec6p. Point mutations in the N-terminal domain of Sec6p result in temperature sensitive growth and secretion defects, without loss of Sec6p-Sec9p interaction. However, at the non-permissive temperature, the exocyst subunits Sec5p, Sec10p and Sec15p are mislocalized and are absent from the exocyst complex. The resulting subcomplex, containing Sec3p, Sec8p, Exo70p and Exo84p, remains stably assembled and localized at sites of polarized secretion. This subcomplex is likely due to disruption of interaction between Sec6p and Sec5p, and may be similar to that observed at restrictive temperatures in the sec6-54temperature sensitive mutant. Additionally, one of the sec6 temperature sensitive mutants displays a loss of binding to the yeast regulatory protein Sec1p. In vitro binding studies indicate a direct interaction between Sec1p and the free pool of the wild-type Sec6p protein, suggesting close interplay between Sec6p and Sec1p in the regulation of SNARE complexes. A coherent model which incorporates all these interactions has continued to be elusive. However, the results I have found do suggest several hypotheses which should prove testable in the future.
82

Úloha vybraných podjednotek komplexu exocyst v odpovědi rostlin na patogena / The Role of selected exocyst subunits in response of plants to pathogen

Sabol, Peter January 2018 (has links)
In the recent years, there has been a growing number of publications indicating at the involvement of plant secretory pathway in defense against phytopathogens. Specifically, roles of plant exocyst complex have been explored in deeper detail in current research. Yet, exactly how exocyst- mediated exocytosis contributes to secretion of antimicrobials and cell wall-based defense remains unclear. In the presented Dissertation, I provide both experimental evidence and devise further hypotheses on selected exocyst's subunits in plant immune reactions. Particularly, I show that EXO70B1 exocyst subunit interacts with immunity-related RIN4 protein. Cleavage of RIN4 by AvrRpt2 Pseudomonas syringae effector protease releases both RIN4 fragments and EXO70B1 from the plasma membrane when transiently expressed in Nicotiana benthamiana leaves. I speculate on how this might have an implication in regulation of polarized callose deposition. In a co-authored opinion paper, we also hypothesize that EXO70B1-mediated autophagic degradation of TN2 resistance protein prevents its hyperactivation and lesion mimic phenotype development. In addition, in collaboration with my colleagues, I present data on EXO70H4's engagement in PMR4 callose synthase secretion, required for silica deposition. Representing a possible...
83

Investigating the Architecture and Vesicle Tethering Function of the Yeast Exocyst Complex: A Dissertation

Heider, Margaret R. 28 January 2016 (has links)
The exocyst is an evolutionarily conserved, hetero-octameric protein complex proposed to serve as a multi-subunit tethering complex for exocytosis, although it remains poorly understood at the molecular level. The classification of the exocyst as a multisubunit tethering complex (MTC) stems from its known interacting partners, polarized localization at the plasma membrane, and structural homology to other putative MTCs. The presence of 8 subunits begs the questions: why are so many subunits required for vesicle tethering and what are the contributions of each of these subunits to the overall structure of the complex? Additionally, are subunit or subcomplex dynamics a required feature of exocyst function? We purified endogenous exocyst complexes from Saccharomyces cerevisiae, and showed that the purified complexes are stable and consist of all eight subunits with equal stoichiometry. This conclusion contrasts starkly with current models suggesting that the yeast exocyst tethers vesicles by transient assembly of subcomplexes at sites of exocytosis. Using a combination of biochemical and auxininduced degradation experiments in yeast, we mapped the subunit connectivity, identified two stable four-subunit modules within the octamer, and demonstrated that several known exocyst binding partners are not necessary for exocyst assembly and stability. Furthermore, we visualized the structure of the yeast complex using negative stain electron microscopy; our results indicate that exocyst exists predominantly as an octameric complex in yeast with a stably assembled, elongated structure. This is the first complete structure of a CATCHR family MTC and it differs greatly from the EM structures available for the partial COG and Dsl1 complexes. Future work will be necessary to determine whether exocyst conformational changes are a required feature of vesicle tethering and how such changes are regulated. These architectural insights are now informing the design of the first in vitro functional assay for the exocyst complex. We developed methodology for attaching fluorescently-labeled exocyst complexes to glass slides and monitoring the capture of purified, endogenous secretory vesicles by single molecule TIRF microscopy. By this approach, we can monitor tethering events in real time and determine the required factors and kinetics of exocytic vesicle tethering.
84

A comparison of regulatory mechanisms of luteinizing hormone prolactin and growth hormone exocytosis in permeabilized primary pituitary cells (Part 1) ; The effect of divalent cations on luteinizing hormone and prolactin exocytosis in permeabilized primary pituitary cells (Part 2)

Franco, Sharone Elizabeth January 1992 (has links)
No description available.
85

On the influence of PI(4,5)P2 and PI(3,4,5)P3-enriched lipid microdomains on exocytosis.

Jackson, James R. 23 September 2013 (has links)
No description available.
86

The Effect of Alcohol on Lipid Membrane-Membrane Fusion and SNARE Proteins

Coffman, Robert E. 19 January 2023 (has links) (PDF)
Currently the treatment of alcohol use disorder is very difficult and often requires the combination of therapy and medications, with many who undertake treatment experiencing relapse over time. There is also no treatment in use to prevent the development of alcohol use disorder. It is the aim of this work to provide information that may be useful for the development of a preventative treatment for developing alcohol use disorder by elucidating more of the acute effects of alcohol use. It is known that these effects originate in the brain. Within the brain are circuits made up of neurons that communicate with each other through chemical synapses. These chemical synapses involve the release of neurotransmitters from one neuron that are detected by another neuron, which initiates its own response. It is known that ethanol can change how much neurotransmitter is released from a neuron, depending on the specific neuron tested, and many researchers have implicated the "release machinery" as a target. It is also known that alcohol can affect lipid membrane properties that are important for the fusion of the vesicle membrane, encapsulating the neurotransmitter, with the cell membrane for release of the neurotransmitter outside of the neuron. It is not known if alcohol directly affects the SNARE proteins ("release machinery") or the lipid membranes to initiate the change in neurotransmitter release previously observed. Within this work you will find a discussion of the steps of neurotransmitter release and the known effects of anesthetics on components of this process, as an introduction to the topic (Chapters 1 and 2). In Chapters 3-5 you will find studies that successively dive deeper and deeper into the effects of alcohol on the SNARE proteins and lipid membranes. We show that ethanol is effective at a dose of 0.4% v/v or 64 mM at increasing fusion probability in a model of neurotransmitter release that uses the 3 SNARE proteins to drive fusion of a vesicle with a supported membrane. We also show that alcohol has little direct effect on the SNARE proteins themselves. In addition, we provide evidence that alcohol alters fusion oppositely, depending on which membrane leaflet it has most direct access to. In Chapter 5 we show that alcohol increases the probability of lipid tail protrusion in silico. Previously it has been shown that protrusion of one fatty acid tail of one lipid can initiate fusion of that membrane with an apposing membrane. These data provide further insight into the effects of alcohol on a neuron and we would argue are valuable to research pursuing treatment and prevention of alcohol use disorder.
87

Shape Optimization for in Vitro and In Vivo Biomedical Sensing

Nair, Sumitha Parameswaran 31 March 2009 (has links)
No description available.
88

SNARE-Mediated Exocytosis of Atrial Natriuretic Peptide from Atrial Cardiac Myocytes

Peters, Christian G. 13 June 2007 (has links)
No description available.
89

Munc18 function in large dense-core vesicle exocytosis / Munc18 function in large dense-core vesicle exocytosis

Gulyas-Kovacs, Attila 26 January 2005 (has links)
No description available.
90

Regulation of glucose homeostasis by Doc2b and Munc18 proteins.

Ramalingam, Latha January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Glucose homeostasis is maintained through the coordinated actions of insulin secretion from pancreatic beta cells and insulin action in peripheral tissues. Dysfunction of insulin action yields insulin resistance, and when coupled with altered insulin secretion, results in type 2 diabetes (T2D). Exocytosis of intracellular vesicles, such as insulin granules and glucose transporter (GLUT4) vesicles is carried out by similar SNARE (soluble NSF attachment receptor) protein isoforms and Munc18 proteins. An additional regulatory protein, Doc2b, was implicated in the regulation of these particular exocytosis events in clonal cell lines, but relevance of Doc2b in the maintenance of whole body glucose homeostasis in vivo remained unknown. The objective of my doctoral work was to delineate the mechanisms underlying regulation of insulin secretion and glucose uptake by Doc2b in effort to identify new therapeutic targets within these processes for the prevention and/or treatment of T2D. Towards this, mice deficient in Doc2b (Doc2b-/- knockout mice) were assessed for in vivo alterations in glucose homeostasis. Doc2b knockout mice were highly susceptible to preclinical T2D, exhibiting significant whole-body glucose intolerance related to insulin secretion insufficiency as well as peripheral insulin resistance. These phenotypic defects were accounted for by defects in assembly of SNARE complexes. Having determined that Doc2b was required in the control over whole body glycemia in vivo, whether Doc2b is also limiting for these mechanisms in vivo was examined. To study this, novel Doc2b transgenic (Tg) mice were engineered to express ~3 fold more Doc2b exclusively in pancreas, skeletal muscle and fat tissues. Compared to normal littermate mice, Doc2b Tg mice had improved glucose tolerance, related to concurrent enhancements in insulin mumsecretion from beta cells and insulin-stimulated glucose uptake in the skeletal muscle. At the molecular level, Doc2b overexpression promoted SNARE complex assembly, increasing exocytotic capacities in both cellular processes. These results unveiled the concept that intentional elevation of Doc2b could provide a means of mitigating two primary aberrations underlying T2D development.

Page generated in 0.1775 seconds