• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of Formal Explanations in ML

Smyrnioudis, Nikolaos January 2023 (has links)
The most performant Machine Learning (ML) classifiers have been labeled black-boxes due to the complexity of their decision process. eXplainable Artificial Intelligence (XAI) methods aim to alleviate this issue by crafting an interpretable explanation for a models prediction. A drawback of most XAI methods is that they are heuristic with some drawbacks such as non determinism and locality. Formal Explanations (FE) have been proposed as a way to explain the decisions of classifiers by extracting a set of features that guarantee the prediction. In this thesis we explore these guarantees for different use cases: speeding up the inference speed of tree-based Machine Learning classifiers, curriculum learning using said classifiers and also reducing training data. We find that under the right circumstances we can achieve up to 6x speedup by partially compiling the model to a set of rules that are extracted using formal explainability methods. / De mest effektiva maskininlärningsklassificerarna har betecknats som svarta lådor på grund av komplexiteten i deras beslutsprocess. Metoder för förklarbar artificiell intelligens (XAI) syftar till att lindra detta problem genom att skapa en tolkbar förklaring för modellens prediktioner. En nackdel med de flesta XAI-metoder är att de är heuristiska och har vissa nackdelar såsom icke-determinism och lokalitet. Formella förklaringar (FE) har föreslagits som ett sätt att förklara klassificerarnas beslut genom att extrahera en uppsättning funktioner som garanterar prediktionen. I denna avhandling utforskar vi dessa garantier för olika användningsfall: att öka inferenshastigheten för maskininlärningsklassificerare baserade på träd, kurser med hjälp av dessa klassificerare och även minska träningsdata. Vi finner att under rätt omständigheter kan vi uppnå upp till 6 gånger snabbare prestanda genom att delvis kompilera modellen till en uppsättning regler som extraheras med hjälp av formella förklaringsmetoder.

Page generated in 0.1082 seconds