• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation of General Semi-Markov Models Using Expolynomials / Approximation av generella Semi-Markov modeller med hjälp av Expolynomials

Nyholm, Niklas January 2021 (has links)
Safety analysis is critical when developing new engineering systems. Many systems have to function under randomly occurring events, making stochastic processes useful in a safety modelling context. However, a general stochastic process is very challenging to analyse mathematically. Therefore, model restrictions are necessary to simplify the mathematical analysis. A popular simplified stochastic model is the Semi-Markov process (SMP), which is a generalization of the "memoryless" continuous-time Markov chain. However, only a subclass of Semi-Markov models can be analysed with non-simulation based methods. In these models, the cumulative density function (cdf) of the random variables describing the system is in the form of expolynomials. This thesis investigates the possibility to extend the number of Semi-Markov models that can be analysed with non-simulation based methods by approximating the non-expolynomial random variables with expolynomials. This thesis focus on approximation of models partially described by LogNormal and Weibull distributed random variables. The result shows that it is possible to approximate some Semi-Markov models with non-expolynomial random variables. However, there is an increasing difficulty in approximating a non-expolynomial random variable when the variability in the distribution increases. / Säkerhetsanalys är avgörande när man utvecklar nya tekniska system. Många system måste fungera under slumpmässigt inträffande händelser, vilket gör stokastiska processer användbara i ett säkerhetsmodellerande sammanhang. En allmän stokastisk process är dock mycket utmanande att analysera matematiskt. Därför är begränsningar på modellen nödvändiga för att förenkla den matematiska analysen. En populär förenklad stokastisk modell är Semi-Markov-processen (SMP), vilket är en generalisering av den "minneslösa" tids-kontinuerliga Markov-kedjan. Dock är det endast en underklass av Semi-Markov-modeller som kan analyseras med icke-simuleringsbaserade metoder. I dessa modeller är den kumulativa densitetsfunktionen (cdf) för de slumpmässiga variablerna som beskriver systemet i form av expolynomials. Denna rapport undersöker möjligheten att utöka antalet Semi-Markov-modeller som kan analyseras med icke-simuleringsbaserade metoder genom att approximera de icke-expolynomial slumpvariablerna med expolynomials. Vi fokuserar på approximering av modeller som delvis beskrivs av LogNormal distribuerade och Weibull distribuerade slumpmässiga variabler. Resultatet visar att det är möjligt att approximera vissa stokastiska variabler som är icke-expolynomial i Semi-Markov-modeller. Resultatet visar dock att det är en ökande svårighet att approximera en icke-expolynomial slumpmässiga variabeln när variabiliteten i fördelningen ökar.

Page generated in 0.0409 seconds