• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of sequence prediction to data compression

Chung, Jimmy Hok Leung January 2000 (has links)
No description available.
2

Integration of Hidden Markov Modelling and Bayesian Network for Fault Detection and Prediction of Complex Engineered Systems

Soleimani, Morteza, Campean, Felician, Neagu, Daniel 07 June 2021 (has links)
yes / This paper presents a methodology for fault detection, fault prediction and fault isolation based on the integration of hidden Markov modelling (HMM) and Bayesian networks (BN). This addresses the nonlinear and non-Gaussian data characteristics to support fault detection and prediction, within an explainable hybrid framework that captures causality in the complex engineered system. The proposed methodology is based on the analysis of the pattern of similarity in the log-likelihood (LL) sequences against the training data for the mixture of Gaussians HMM (MoG-HMM). The BN model identifies the root cause of detected/predicted faults, using the information propagated from the HMM model as empirical evidence. The feasibility and effectiveness of the presented approach are discussed in conjunction with the application to a real-world case study of an automotive exhaust gas Aftertreatment system. The paper details the implementation of the methodology to this case study, with data available from real-world usage of the system. The results show that the proposed methodology identifies the fault faster and attributes the fault to the correct root cause. While the proposed methodology is illustrated with an automotive case study, its applicability is much wider to the fault detection and prediction problem of any similar complex engineered system.
3

Integration of Hidden Markov Modelling and Bayesian Networks for fault analysis of complex systems. Development of a hybrid diagnostics methodology based on the integration of hidden Markov modelling and Bayesian networks for fault detection, prediction and isolation of complex automotive systems

Soleimani, Morteza January 2021 (has links)
The complexity of engineered systems has increased remarkably to meet customer needs. In the continuously growing global market, it is essential for engineered systems to keep their productivities which can be achieved by higher reliability and availability. Integrated health management based on diagnostics and prognostics provides significant benefits, which includes increasing system safety and operational reliability, with a significant impact on the life-cycle costs, reducing operating costs and increasing revenues. Characteristics of complex systems such as nonlinearity, dynamicity, non-stationarity, and non-Gaussianity make diagnostics and prognostics more challenging tasks and decrease the application of classic reliability methods remarkably – as they cannot address the dynamic behaviour of these systems. This research has focused on detecting, predicting and isolating faults in engineered systems, using operational data with multifarious data characteristics. Complexities in the data, including non-Gaussianity and high nonlinearity, impose stringent challenges on fault analysis. To deal with these challenges, this research proposed an integrated data-driven methodology in which hidden Markov modelling (HMM) and Bayesian network (BN) were employed to detect, predict and isolate faults in a system. The fault detection and prediction were based on comparing and exploiting pattern similarity in the data via the loglikelihood values generated through HMM training. To identify the root cause of the faults, the probability values obtained from updating the BN were used which were based on the virtual evidence provided by HMM training and log-likelihood values. To set up a more accurate data-driven model – particularly BN structure – engineering analyses were employed in a structured way to explore the causal relationships in the system which is essential for reliability analysis of complex engineered systems. The automotive exhaust gas Aftertreatment system is a complex engineered system consisting of several subsystems working interdependently to meet emission legislations. The Aftertreatment system is a highly nonlinear, dynamic and non-stationary system. Consequently, it has multifarious data characteristics, where these characteristics raise the challenges of diagnostics and prognostics for this system, compared to some of the references systems, such as the Tennessee Eastman process or rolling bearings. The feasibility and effectiveness of the presented framework were discussed in conjunction with the application to a real-world case study of an exhaust gas Aftertreatment system which provided good validation of the methodology, proving feasibility to detect, predict, and isolate unidentified faults in dynamic processes.
4

The hidden dynamics of CRISPR-Cas interference complexes during target search and cleavage

Aldag, Pierre 04 February 2025 (has links)
Clustered Regularly Interspersed Palindromic Repeats (CRISPR) und ihre zugehörigen (Cas) Proteine sind eine Reihe neuer Werkzeuge, die eine beispiellose Kontrolle über genetisches Material ermöglichen. Die meisten CRISPR-Cas-Systeme verwenden ein kurzes RNA-Molekül, das in ihre Struktur eingebunden ist, um sie zu einer spezifischen, komplementären DNA-Sequenz zu führen. Nach Erkennung der Komplementarität wird die DNA dann gespalten. Aufgrund der einfachen Reprogrammierbarkeit der Guide-RNA und ihrer hohen Spezifität für die Ziel-DNA-Sequenz haben diese Systeme ein enormes Potenzial in Bereichen wie Medizin, Landwirtschaft, Biotechnologie und Krankheitsforschung sowie in anderen Bereichen gezeigt und die Aufmerksamkeit von Wissenschaft und Industrie auf sich gezogen. Das gründliche Verständnis dieser Systeme ist entscheidend für ihre sichere Anwendung, insbesondere wenn man die ethischen Implikationen in Betracht zieht. In dieser Arbeit wurden komplexe Einzelmolekülexperimente unter Verwendung mehrerer hochmoderner Methoden eingesetzt, um einige bisher ungelöste Fragen bezüglich der Target-Suche und -spaltung dieser CRISPR-Cas-Systeme zu beantworten. • Direkte Beobachtung und Quantifizierung der Target-Suche durch den CRISPR-Cas-Überwachungskomplex Cascade Der Typ I-E CRISPR-Cas-Komplex Cascade ist ein Multiprotein-Komplex ohne inhärente Nukleaseaktivität, der doppelsträngige DNA bindet, indem er zuerst eine kurze Sequenz von zwei Nukleotiden namens Protospacer Adjacent Motif (PAM) erkennt und dann eine sogenannte R-Loop-Struktur mit dem benachbarten komplementären DNA-Strang bildet. Während der Prozess der R-Loop-Bildung vielfach untersucht wurde, bleibt der Mechanismus, wie Cascade bei potenziell sehr langen DNA-Sequenzen überhaupt zur richtigen Stelle gelangt unklar. Um Licht in diesen Prozess zu bringen, wurde ein kombiniertes Magnetpinzetten- und Fluoreszenzmikroskopie-Experiment etabliert, das die gleichzeitige Erfassung von DNA-Bindung und R-Loop-Bildung ermöglicht. Diese Experimente zeigten, dass Cascade für die Target-Suche einen Mechanismus namens Facilitated Diffusion verwendet. Dies bedeutet, dass Cascade nach einem dreidimensional Diffusionsprozess an einer zufälligen Stelle an DNA bindet und dann mit einem eindimensionalen Scannen um die Bindungsstelle beginnt. Wenn kein Target gefunden wird, wird der Prozess wiederholt. Bei einer nichterfolgreichen Suche dauert das eindimensionale Scannen etwa 150 ms und erstreckt sich über mehrere hundert potenzielle Targets. Das Verdrehen der DNA und damit das Anlegen von Supercoiling erleichtert oder behindert die R-Schleifen-Bildung, je nach Dreh-Richtung, und beeinflusst damit indirekt die Dauer der Suche. Die Experimente zeigten weiterhin, dass auch die Effizienz der Target-Suche, d.h. die Wahrscheinlichkeit, das richtige Ziel zu finden, sobald das eindimensionale Scannen begonnen hat, stark vom Supercoiling abhängt. Während Wahrscheinlichkeiten von über 40 % für negatives Supercoiling gefunden wurden, d.h. mit erleichterter R-Loop-Bildung, betrug sie in Abwesenheit von Supercoiling nur 5 %. • Entwicklung eines kinetischen Modells für den Such- und Erkennungsprozess für den CRISPR-Cas-Überwachungskomplex Cascade Als nächstes wurde ein kinetisches Modell entwickelt, das die Target-Suche als Random Walk auf DNA beschreibt, während dem sich der Cascade-Komplex von PAM zu PAM bewegt und die benachbarten Stellen auf Komplementarität prüft. Dieses Modell ermöglichte nicht nur Vorhersagen von Suchparametern wie Sucheffizienz und -dauer, sondern ermöglichte auch eine genaue Beschreibung der Erkennungswahrscheinlichkeiten, sobald das richtige PAM gefunden wurde. Es konnte herausgefunden werden, dass die Wahrscheinlichkeit, bei der Begegnung mit dem richtigen Ziel erfolgreich einen R-Loop zu bilden, gering ist, höchstwahrscheinlich um einen zu langen Aufenthalt an nur teilweise komplementären und damit falschen Targets zu verhindern. Das Modell sagt jedoch voraus, dass eine Stelle während eines eindimensionalen Scans bis zu 15 Mal besucht wird, um die geringe Erkennungswahrscheinlichkeit auszugleichen. Es wurde somit gezeigt, dass Target-Suche und -Erkennung in einem ausgefeilten Prozess eng miteinander verbunden sind, der die Zeit an falschen Targets minimiert aber dennoch eine schnelle Erkennung des richtigen Targets ermöglicht. • Untersuchung der Stabilität von CRISPR-Cas9 nach der Spaltung CRISPR-Cas9 ist ein einzelnes Protein, das doppelsträngige DNA in einem durch RNA gesteuerten Prozess ähnlich dem von Cascade anvisiert und bindet. Cas9 hat jedoch eine inhärente Nukleaseaktivität und spaltet die DNA nach der R-Loop-Bildung selbst. Dafür hat es zwei Nuklease-Domänen, die jeweils einen Strang der DNA spalten. Cas9 ist das derzeit am weitesten verbreitete Tool für Anwendungen in der Genomeditierung. Eine Erkenntnis, an dessen Erklärung weiterhin geforscht wird, ist, dass Cas9 auch nach der Spaltung für Stunden an sein DNA-Target gebunden bleibt, was es zu einem de-facto Single-Turnover-Enzym macht. Biologisch gesehen ist dies erstaunlich, da CRISPR-Cas-Systeme in einem engen Wettbewerb gegen ihre viralen Gegner stehen. Aus Anwendungssicht verbirgt und behindert Cas9 durch das lange Binden die zu bearbeitende DNA-Stelle vor den Reparatursystemen der Zellen. Für ein effizientes Gensystem ist es entscheidend, Möglichkeiten zu entwickeln, Cas9 kontrolliert von seinem Ziel zu entfernen. Dafür ist ein detailliertes Verständnis des Verhaltens von Cas9 nach der Reaktion erforderlich. Bisher wurde angenommen, dass Cas9 in eine einzelne, stabile post-Spaltungskonformation eintritt, deren Stabilität, insbesondere unter Einfluss von Torsion und Kraft, wie sie in der Zelle oft auftreten nicht gut untersucht ist. Unter Verwendung eines hochparallelen Magnetpinzetten-Experiments, das die gleichzeitige Beobachtung von bis zu Hunderten von DNA-Molekülen ermöglicht, wurde gezeigt, dass die post-Spaltungsstabilität von Cas9 und seinen mutierten Nickase-Varianten viel komplexer ist: Wenn der Non-Target- Strang (der Strang, der nicht an der R-Loop-Bildung beteiligt ist) gespalten wird, wie es bei Wildtyp-Cas9 und seiner Non-Target-Strang spaltenden Nickase-Variante der Fall ist, wird der gespaltene Non-Target-Strang über eine Drehbewegung um den anderen Strang herum unter Reibung freigesetzt. Auf diese Weise können diese Varianten hohe Torsionsspannungen aushalten und bleiben für Stunden an ihrem Ziel gebunden, was nachfolgende Zellreparaturmechanismen behindert. Für die Nickase-Variante, die nur den Target-Strang spaltet, kann der Non-Target-Strang bei ausreichend hohem Supercoiling-Niveau, wie es zum Beispiel während der Transkription in Zellen häufig vorkommt, nicht freigesetzt werden. Stattdessen kollabiert bei ausreichend hohen Supercoiling-Niveaus der R-Loop und die Cas9-Nickase dissoziiert von der DNA. Für diese Cas9-Variante deckten die Experimente mehrere verschiedene Stabilitätszustände mit Kollapszeiten von einigen Minuten bis hin zu Stunden auf. Diese Ergebnisse legen nahe, dass es nach der Spaltung hohe konformationelle Flexibilität mit komplexen Dynamiken zwischen verschiedenen Stabilitätszuständen gibt.:Table of Contents 1 Introduction 1 1.1 How to fight off viruses: CRISPR and the adaptive immune system of prokaryotes 1 1.2 How to edit the genome: Strategies, applications and obstacles 6 1.3 The needle in the haystack: Search, recognition, and cleavage of specific DNA sequences 11 1.4 The influence of torque on the interaction of CRISPR-Cas systems with DNA 21 1.5 How to model target search and recognition 25 2 Methods 33 2.1 Magnetic Tweezers 33 2.2 Total Internal Reflection Fluorescence Microscopy 41 2.3 Combined Magnetic Tweezers and TIRF Measurements 44 3 Objectives and Outline 47 4 Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system 49 4.1 Summary 49 4.2 Associated publication 51 4.3 Supplementary Information 66 5 Probing the stability of the SpCas9-DNA complex after cleavage 93 5.1 Summary 93 5.2 Associated publication 95 5.3 Supplementary Information 107 6 Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions 115 6.1 Summary 115 6.2 Associated publication 116 7 Conclusion and Outlook 147 Bibliography 151 List of Figures 171 Selbstständigkeitserklärung 175 Author Contributions 177 Acknowledgements 179 / Clustered Regularly Interspersed Palindromic Repeats (CRISPR) and their associated (Cas) proteins are new tools that allow unprecedented control over genetic material. Most CRISPR-Cas systems use a short RNA molecule incorporated into their structure to guide them to a specific, complementary sequence of DNA. Upon recognition of the complementarity, the DNA is then cleaved. Given the simple re-programmability of the guide RNA and high specificity for the targeted DNA sequence, these systems have shown immense potential in fields such as medicine, agriculture, biotechnology, and disease research, among others, and have attracted the attention of academia and industry. A thorough understanding of these systems on different scales is paramount to their safe usage, especially considering the ethical implications. In this work, complex single-molecule experiments combining several state-of-the-art methods were employed to shed light on some unresolved questions regarding target search and cleavage of these CRISPR-Cas systems. • Direct observation and quantification of the target search by the CRISPR-Cas surveillance complex Cascade The Type I-E CRISPR-Cas complex Cascade is a multi-protein complex without inherent nuclease activity that targets and binds double-stranded DNA by first detecting a short two-nucleotide long sequence called Protospacer Adjacent Motif (PAM) and then forming a so-called R-loop structure with the adjacent complementary DNA strand. While the process of R-loop formation has been studied extensively, the mechanism of how Cascade gets to the correct site in the first place - on potentially vast DNA sequences - remains unclear. To shed light on this process, a combined magnetic tweezers and fluorescence microscopy assay was established that allowed the simultaneous detection of DNA binding and R-loop formation. These experiments showed that Cascade employs a facilitated diffusion mechanism for target search. After a three-dimensional diffusion process, it randomly binds DNA and proceeds to one-dimensional scanning around the binding site. If no target is found, the process is repeated. If no target can be found, the one-dimensional scanning lasts approximately 150ms and spans several hundred potential targets. Twisting the DNA facilitates or hinders R-loop formation depending on the direction and thereby indirectly affects the duration. The experiments further showed that the efficiency of the target search, i.e., the probability of finding the correct target once a one-dimensional scanning event has started, also depends greatly on the level of supercoiling. While probabilities higher than 40% were found for negative supercoiling levels, i.e., with facilitated R-loop formation, it was as low as 5% in the absence of supercoiling. • Establishment of a kinetic model for the target search and recognition process employed by the CRISPR-Cas surveillance complex Cascade Next, a kinetic model was developed, which described the target search as a random walk on DNA, during which the Cascade complex scans individual PAMs for adjacent targets. This model enabled predictions of target search parameters, such as search efficiency and duration, and also allowed the accurate description of target recognition probabilities once the correct PAM had been found under varying supercoiling levels. We found that upon encountering the correct target, the probability of successfully forming an R-loop is low, preventing stalling at only partially complementary sequences. However, our model predicts that the target site is revisited up to 15 times during one scanning process to compensate for the low recognition probability. It was thus shown that target search and recognition are tightly linked in a delicate process, minimizing time at off-targets while nonetheless enabling fast recognition. • Probing the stability of CRISPR-Cas9 after cleavage CRISPR-Cas9 is a single protein that targets and binds double-stranded DNA in an RNA-guided process similar to Cascade. In contrast to Cascade, Cas9 has inherent nuclease activity and cleaves the DNA upon R-loop formation. More specifically, Cas9 has two nuclease domains that each cleave one strand of the DNA. It is the currently most widely used tool for applications in genome editing. One finding that continues to puzzle researchers is that Cas9 stays bound to its DNA target for durations in the order of hours even after cleavage, making it a de facto single-turnover enzyme. From a biological standpoint, this is puzzling because CRISPR-Cas systems are in a tight arms race against their viral adversaries. From an application viewpoint, Cas9 conceals and obstructs the to-be-edited DNA site from the cells’ repair systems. For an efficient gene editing system, it is crucial to develop ways of removing Cas9 from its target in a controlled manner. For this, a detailed understanding of the post-reaction behavior of Cas9 is required. So far, Cas9 was believed to enter a single, stable post-cleavage conformation, the stability of which was not well understood, especially under the influence of force and twist. Employing a highly parallel magnetic tweezers experiment, allowing the simultaneous observation of up to hundreds of DNA molecules, the post-cleavage stability of Cas9 and its mutated nickase variants was shown to be much more complex: If the non-target strand (the strand not involved in the R-loop) is cleaved, as is the case for wild-type Cas9 and its non-target strand cleaving nickase variant, the cleaved non-target strand is released via a swiveling motion under friction. This way, these variants can release high torsional stress and stay bound to their target for hours, hindering subsequent cell repair machinery. The non-target strand cannot be released upon torsional stress for the nickase variant that only cleaves the target strand. Instead, if the supercoiling levels are high enough, as often applied in cells, for example during transcription, the R-loop collapses, and the Cas9 nickase dissociates from the DNA. We found several different stability states with collapse times of a few minutes up to hours. These results suggest high conformational flexibility after cleavage with complex dynamics between different stability states.:Table of Contents 1 Introduction 1 1.1 How to fight off viruses: CRISPR and the adaptive immune system of prokaryotes 1 1.2 How to edit the genome: Strategies, applications and obstacles 6 1.3 The needle in the haystack: Search, recognition, and cleavage of specific DNA sequences 11 1.4 The influence of torque on the interaction of CRISPR-Cas systems with DNA 21 1.5 How to model target search and recognition 25 2 Methods 33 2.1 Magnetic Tweezers 33 2.2 Total Internal Reflection Fluorescence Microscopy 41 2.3 Combined Magnetic Tweezers and TIRF Measurements 44 3 Objectives and Outline 47 4 Dynamic interplay between target search and recognition for a Type I CRISPR-Cas system 49 4.1 Summary 49 4.2 Associated publication 51 4.3 Supplementary Information 66 5 Probing the stability of the SpCas9-DNA complex after cleavage 93 5.1 Summary 93 5.2 Associated publication 95 5.3 Supplementary Information 107 6 Correlated Single-Molecule Magnetic Tweezers and Fluorescence Measurements of DNA-Enzyme Interactions 115 6.1 Summary 115 6.2 Associated publication 116 7 Conclusion and Outlook 147 Bibliography 151 List of Figures 171 Selbstständigkeitserklärung 175 Author Contributions 177 Acknowledgements 179
5

Approximation of General Semi-Markov Models Using Expolynomials / Approximation av generella Semi-Markov modeller med hjälp av Expolynomials

Nyholm, Niklas January 2021 (has links)
Safety analysis is critical when developing new engineering systems. Many systems have to function under randomly occurring events, making stochastic processes useful in a safety modelling context. However, a general stochastic process is very challenging to analyse mathematically. Therefore, model restrictions are necessary to simplify the mathematical analysis. A popular simplified stochastic model is the Semi-Markov process (SMP), which is a generalization of the "memoryless" continuous-time Markov chain. However, only a subclass of Semi-Markov models can be analysed with non-simulation based methods. In these models, the cumulative density function (cdf) of the random variables describing the system is in the form of expolynomials. This thesis investigates the possibility to extend the number of Semi-Markov models that can be analysed with non-simulation based methods by approximating the non-expolynomial random variables with expolynomials. This thesis focus on approximation of models partially described by LogNormal and Weibull distributed random variables. The result shows that it is possible to approximate some Semi-Markov models with non-expolynomial random variables. However, there is an increasing difficulty in approximating a non-expolynomial random variable when the variability in the distribution increases. / Säkerhetsanalys är avgörande när man utvecklar nya tekniska system. Många system måste fungera under slumpmässigt inträffande händelser, vilket gör stokastiska processer användbara i ett säkerhetsmodellerande sammanhang. En allmän stokastisk process är dock mycket utmanande att analysera matematiskt. Därför är begränsningar på modellen nödvändiga för att förenkla den matematiska analysen. En populär förenklad stokastisk modell är Semi-Markov-processen (SMP), vilket är en generalisering av den "minneslösa" tids-kontinuerliga Markov-kedjan. Dock är det endast en underklass av Semi-Markov-modeller som kan analyseras med icke-simuleringsbaserade metoder. I dessa modeller är den kumulativa densitetsfunktionen (cdf) för de slumpmässiga variablerna som beskriver systemet i form av expolynomials. Denna rapport undersöker möjligheten att utöka antalet Semi-Markov-modeller som kan analyseras med icke-simuleringsbaserade metoder genom att approximera de icke-expolynomial slumpvariablerna med expolynomials. Vi fokuserar på approximering av modeller som delvis beskrivs av LogNormal distribuerade och Weibull distribuerade slumpmässiga variabler. Resultatet visar att det är möjligt att approximera vissa stokastiska variabler som är icke-expolynomial i Semi-Markov-modeller. Resultatet visar dock att det är en ökande svårighet att approximera en icke-expolynomial slumpmässiga variabeln när variabiliteten i fördelningen ökar.

Page generated in 0.1113 seconds