• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cell-based multi-scale modeling for systems and synthetic biology : from stochastic gene expression in single cells to spatially organized cell populations / Modélisation multi-échelle de cellule-centrée pour systèmes et biologie synthétique : de l'expression stochastique des gènes en cellule unique à l'espace organisé des populations de cellules

Bertaux, François 15 May 2016 (has links)
Les sources intrinsèques d'héterogénéité cellulaire, comme l'expression stochastique des gènes, sont de plus en plus reconnues comme jouant un rôle important dans la dynamique des tissus, tumeurs, communautés microbiennes... Cependant, elles sont souvent ignorées ou représentées de manière simpliste dans les modèles théoriques de populations de cellules. Dans cette thèse, nous proposons une approche cellule-centrée (chaque cellule est représentée de manière individuelle), multi-échelle (les décisions cellulaires sont placées sous le contrôle de voies de signalisation biochimiques simulées dans chaque cellule) pour modéliser la dynamique de populations de cellules. La nouveauté principale de cette approche réside dans la prise en compte systématique (pour toutes les protéines modélisées) des fluctuations du niveau des protéines résultant de l'expression stochastique des gènes. Cela permet d'étudier l'effet combiné des causes intrinsèques et environnementales d'héterogénéité cellulaire sur la dynamique de la population de cellules. Un élément central de notre approche est une stratégie parsimonieuse pour attribuer les paramètres de modèles d'expression stochastique des gènes. Nous appliquons cette approche à deux cas d'étude. Nous considérons en premier la resistance à l'agent anti-cancer TRAIL, qui peut induire l'apoptose sélectivement dans les cellules cancéreuses. Nous construisons d'abord un modèle 'cellule unique' de l'apoptose induite par TRAIL et le comparons à des données existantes quantitatives et 'cellules uniques'. Le modèle explique la mort fractionnelle (le fait que seul une fraction des cellules meurent à la suite d'un traitement) et prédit correctement l'héritabilité transiente du destin cellulaire ainsi que l'acquisition transiente de résistance, deux propriétés observées mais hors de portée des modèles pré-existants, qui ne capturent pas la dynamique de l'héterogénéité cellulaire. Dans une seconde étape, nous intégrons ce modèle dans des simulations multi-cellulaires pour étudier la résistance à TRAIL dans des scénarios virtuels intermédiaires entre les études classiques in-vitro et la réponse de tumeurs in-vivo. Plus précisément, nous considérons la réponse en temps long de sphéroides multi-cellulaires à des traitements répétés de TRAIL. L'analyse de nos simulations permet de proposer une explication originale et méchanistique de l'acquisition transiente de résistance, impliquant la dégradation ciblée des protéines activées et un différentiel dans le renouvellement des protéines pro- et anti- apoptotiques. Nous appliquons aussi notre approche à un système synthétique de création de motifs développé dans des levures par des collaborateurs. Nous nous concentrons d'abord sur un circuit senseur d'une molécule messager pour lequel nous construisons un modèle cellule unique qui capture de manière fine la dynamique de réponse du circuit telle qu'observée par cytométrie en flux. Nous intégrons ensuite ce modèle dans des des simulations multi-cellulaires et montrons que la réponse de micro-colonies organisées spatialement et soumises à des gradients de molécule messager est correctement prédite. Finalement, nous incorporons un modèle d'un circuit de mort et comparons les motifs prédits de cellules mortes/vivantes avec des données expérimentales, nous permettons de mieux comprendre comment les paramètres du circuit se traduisent en phénotypes d'organisation multi-cellulaire. Notre approche peut contribuer à l'obtention de modèles de populations de cellules de plus en plus quantitatifs, prédictifs et qui englobent l'échelle moléculaire. / Cell-intrinsic, non-environmental sources of cell-to-cell variability, such as stochastic gene expression, are increasingly recognized to play an important role in the dynamics of tissues, tumors, microbial communities... However, they are usually ignored or oversimplified in theoretical models of cell populations. In this thesis, we propose a cell-based (each cell is represented individually), multi-scale (cellular decisions are controlled by biochemical reaction pathways simulated in each cell) approach to model the dynamics of cell populations. The main novelty compared to traditional approaches is that the fluctuations of protein levels driven by stochastic gene expression are systematically accounted for (i.e., for every protein in the modeled pathways). This enables to investigate the joint effect of cell-intrinsic and environmental sources of cell-to-cell variability on cell population dynamics. Central to our approach is a parsimonious and principled parameterization strategy for stochastic gene expression models. The approach is applied on two case studies. First, it is used to investigate the resistance of HeLa cells to the anti-cancer agent TRAIL, which can induce apoptosis specifically in cancer cells. A single-cell model of TRAIL-induced apoptosis is constructed and compared to existing quantitative, single-cell experimental data. The model explains fractional killing and correctly predicts transient cell fate inheritance and reversible resistance, two observed properties that are out of reach of previous models of TRAIL-induced apoptosis, which do not capture the dynamics of cell-to-cell variability. In a second step, we integrate this model into multi-cellular simulations to study TRAIL resistance in virtual scenarios constructed to help bridging the gap between standard in-vitro assays and the response of in-vivo tumors. More precisely, we consider the long-term response of multi-cellular spheroids to repeated TRAIL treatments. Analysis of model simulations points to an novel, mechanistic explanation for transient resistance acquisition, which involves the targeted degradation of activated proteins and a differential turnover between pro- and anti- apoptotic proteins. Second, we apply our approach to a synthetic spatial patterning system in yeast cells developed by collaborators. Focusing first on a sensing circuit responding to a messenger molecule, we construct a single-cell model that accurately capture the response kinetics of the circuit as observed in flow cytometry data. We then integrate this model into multi-cellular simulations and show that the response of spatially-organized micro-colonies submitted to gradients of messenger molecules is correctly predicted. Finally, we incorporate a model of a killing circuit and compare the predicted patterns of dead or alive cells with experimental data, yielding insights into how the circuit parameters translate into multi-cellular organization phenotypes. Our modeling approach has the potential to accelerate the obtention of more quantitative and predictive models of cell populations that encompass the molecular scale.
2

Modélisation stochastique de l'expression des gènes et inférence de réseaux de régulation / From stochastic modelling of gene expression to inference of regulatory networks

Herbach, Ulysse 27 September 2018 (has links)
L'expression des gènes dans une cellule a longtemps été observable uniquement à travers des quantités moyennes mesurées sur des populations. L'arrivée des techniques «single-cell» permet aujourd'hui d'observer des niveaux d'ARN et de protéines dans des cellules individuelles : il s'avère que même dans une population de génome identique, la variabilité entre les cellules est parfois très forte. En particulier, une description moyenne est clairement insuffisante étudier la différenciation cellulaire, c'est-à-dire la façon dont les cellules souches effectuent des choix de spécialisation. Dans cette thèse, on s'intéresse à l'émergence de tels choix à partir de réseaux de régulation sous-jacents entre les gènes, que l'on souhaiterait pouvoir inférer à partir de données. Le point de départ est la construction d'un modèle stochastique de réseaux de gènes capable de reproduire les observations à partir d'arguments physiques. Les gènes sont alors décrits comme un système de particules en interaction qui se trouve être un processus de Markov déterministe par morceaux, et l'on cherche à obtenir un modèle statistique à partir de sa loi invariante. Nous présentons deux approches : la première correspond à une approximation de champ assez populaire en physique, pour laquelle nous obtenons un résultat de concentration, et la deuxième se base sur un cas particulier que l'on sait résoudre explicitement, ce qui aboutit à un champ de Markov caché aux propriétés intéressantes / Gene expression in a cell has long been only observable through averaged quantities over cell populations. The recent development of single-cell transcriptomics has enabled gene expression to be measured in individual cells: it turns out that even in an isogenic population, the molecular variability can be very important. In particular, an averaged description is not sufficient to account for cell differentiation. In this thesis, we are interested in the emergence of such cell decision-making from underlying gene regulatory networks, which we would like to infer from data. The starting point is the construction of a stochastic gene network model that is able to explain the data using physical arguments. Genes are then seen as an interacting particle system that happens to be a piecewise-deterministic Markov process, and our aim is to derive a tractable statistical model from its stationary distribution. We present two approaches: the first one is a popular field approximation, for which we obtain a concentration result, and the second one is based on an analytically tractable particular case, which provides a hidden Markov random field with interesting properties
3

Vers une compréhension globale et systémique de la production des protéines chez les procaryotes

Leoncini, Emanuele 17 December 2013 (has links) (PDF)
Les réactions biochimiques sous-jacentes au fonctionnement des cellules sont des processus intrinsèquement stochastiques. En conséquence, le fonctionnement de la cellule, considérée comme un système, est aléatoire en raison des fluctuations de ses composantes fondamentales. Parmi ces dernières se trouvent les protéines, qui jouent un rôle majeur dans les cellules. Le caractère stochastique des protéines est tel qu'il est même responsable des différences observées dans le phénotype et ce même dans le cas de cellules clonées exposées à des conditions environnementales identiques. Dans ce travail de thèse nous avons mis en place un nouveau cadre mathématique basé sur les Processus Ponctuels de Poisson Marqués (MPPP) pour décrire les principales étapes de la production d'une protéine spécifique. Avec ce cadre, nous avons réussi à surmonter l'hypothèse fondamentale et restrictive des modèles classiques, ce qui exige une durée exponentielle de toutes les étapes. La description non-markovienne de l'expression génétique obtenue a permis de proposer un modèle plus réaliste comprenant l'étape d'élongation de la protéine et de la dilution des protéines en raison de la croissance du volume. Nous avons également proposé une première modélisation de la production de plusieurs protéines en considérant les interactions comme le résultat de la compétition pour des ressources communes. Le système de production est étudié par une approche de champ moyen. En conclusion, la thèse a porté sur l'étude de la nature stochastique de l'expression génétique, en développant différents modèles afin de progresser vers une description plus réaliste des phénomènes.

Page generated in 0.1151 seconds