• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hamiltonicity, Pancyclicity, and Cycle Extendability in Graphs

Arangno, Deborah C. 01 May 2014 (has links)
The study of cycles, particularly Hamiltonian cycles, is very important in many applications. Bondy posited his famous metaconjecture, that every condition sufficient for Hamiltonicity actually guarantees a graph is pancyclic. Pancyclicity is a stronger structural property than Hamiltonicity. An even stronger structural property is for a graph to be cycle extendable. Hendry conjectured that any graph which is Hamiltonian and chordal is cycle extendable. In this dissertation, cycle extendability is investigated and generalized. It is proved that chordal 2-connected K1,3-free graphs are cycle extendable. S-cycle extendability was defined by Beasley and Brown, where S is any set of positive integers. A conjecture is presented that Hamiltonian chordal graphs are {1, 2}-cycle extendable. Dirac’s Theorem is an classic result establishing a minimum degree condition for a graph to be Hamiltonian. Ore’s condition is another early result giving a sufficient condition for Hamiltonicity. In this dissertation, generalizations of Dirac’s and Ore’s Theorems are presented. The Chvatal-Erdos condition is a result showing that if the maximum size of an independent set in a graph G is less than or equal to the minimum number of vertices whose deletion increases the number of components of G, then G is Hamiltonian. It is proved here that the Chvatal-Erdos condition guarantees that a graph is cycle extendable. It is also shown that a graph having a Hamiltonian elimination ordering is cycle extendable. The existence of Hamiltonian cycles which avoid sets of edges of a certain size and certain subgraphs is a new topic recently investigated by Harlan, et al., which clearly has applications to scheduling and communication networks among other things. The theory is extended here to bipartite graphs. Specifically, the conditions for the existence of a Hamiltonian cycle that avoids edges, or some subgraph of a certain size, are determined for the bipartite case. Briefly, this dissertation contributes to the state of the art of Hamiltonian cycles, cycle extendability and edge and graph avoiding Hamiltonian cycles, which is an important area of graph theory.
2

Expanding a Motion Controlled Game With Focus on Maintainability

Hedbäck, Andreas, Ayar, Deniz January 2018 (has links)
Motion controlled games can be a good physical activity for children, but the game has to be fun and engaging. We have, with a starting point in an existing base game, developed an achievement module which follows certain code standards to make it easier to understand, and to make hand overs of the code smoother. More work on the rest of the game has also been done to make it more engaging, while clean up of the existing code to follow the same standards.

Page generated in 0.0487 seconds