201 |
Lithium-ion battery modeling and SoC estimationXu, Ruoyu January 2023 (has links)
The energy crisis and environmental pollution have become increasingly prominent in recent years. Lithium batteries have attracted extensive attention due to their high energy density, safety, and low pollution. To further study how the battery works, it is necessary to establish an accurate model conforming to the battery characteristics. As the core function of a battery management system(BMS), accurate state of charge(SoC) estimation dramatically improves battery life and performance. This thesis selects a ternary lithium battery in the centre for advanced life cycle engineering(CALCE) dataset for a study of cell modeling and SoC estimation. The second-order Thevenin equivalent circuit model is selected as the cell model due to a trade-off between model complexity and accuracy. The parameters to identify include OCV, internal ohmic resistance, polarized internal resistance and capacitance. They were obtained with the MATLAB toolbox at various SoC state points under different temperatures. The ‘terminal voltage comparison’ method is utilized to verify the identification's accuracy. The simulation results turn out to be satisfactory. Then cell SoC can be estimated after cell modeling. First, the principles of the Coulomb counting method, OCV method and EKF method are analyzed. The state space equations required in SoC estimation are determined by discretizing the non-linear equivalent circuit model. The simulation results are compared with the experimental results in the HPPC discharge experiment. Furthermore, the robustness of the EKF algorithm is further investigated. The results prove that the EKF algorithm has high precision, fast convergence speed and strong anti-interference capability. Last but not least, the research on battery pack SoC estimation was continued. How to expand a single cell into a battery pack is analyzed, including aggregating cells into a pack and scaling a cell model to a pack. In addition, battery pack SoC is individually estimated by the 'Big cell' method and 'Short board effect' method. The result is not so good, indicating that further work can be done to improve the SoC estimation accuracy. / Energikrisen och miljöföroreningarna har blivit allt mer framträdande de senaste åren. Litiumbatteri har väckt stor uppmärksamhet på grund av sin höga energitäthet, säkerhet och låga föroreningar. För att ytterligare studera hur batteriet fungerar är det nödvändigt att etablera en exakt modell som överensstämmer med batteriets egenskaper. Som kärnfunktionen hos BMS förbättrar noggrann SoC-uppskattning dramatiskt batteriets livslängd och prestanda. Denna avhandling väljer ett ternärt litiumbatteri i CALCE-datauppsättningen för forskning. Dessutom slutförs cellmodellering och SoC-uppskattning baserat på det. Den andra ordningens Thevenins ekvivalenta kretsmodell väljs som cellmodell på grund av en avvägning mellan modellens komplexitet och noggrannhet. Parametrarna som måste identifieras inkluderar OCV, intern ohmsk resistans, polariserad intern resistans och kapacitans. De erhölls med MATLAB-verktygslådan vid olika SoC-tillståndspunkter under olika temperaturer. Metoden "terminalspänningsjämförelse" används för att verifiera identifieringens noggrannhet. Simuleringsresultaten visar sig vara tillfredsställande. Sedan kan cell SoC uppskattas efter cellmodellering. Först analyseras principerna för Coulomb-räknemetoden, OCV-metoden och EKF-metoden. Tillståndsrymdsekvationerna som krävs vid SoC-uppskattning bestäms genom att diskretisera den icke-linjära ekvivalenta kretsmodellen. Simuleringsresultaten jämförs med de experimentella resultaten i HPPC-utsläppsexperimentet. Dessutom, robustheten hos EKF-algoritmen undersöks ytterligare. Resultaten bevisar att EKF-algoritmen har hög precision, snabb konvergenshastighet och stark anti-interferensförmåga. Sist men inte minst fortsatte forskningen kring SoC-uppskattning av batteripaket. Hur man expanderar ett enskilt batteri till ett batteripaket analyseras, inklusive aggregering av celler till ett paket och skalning av en cellmodell till ett paket. Dessutom uppskattas batteripaketets SoC individuellt med "Big cell"-metoden och "Short board effect"-metoden. Resultatet är inte så bra, vilket indikerar att ytterligare arbete kan göras för att förbättra SoC-uppskattningens noggrannhet.
|
202 |
State of Charge and Range Estimation of Lithium-ion Batteries in Electric VehiclesKhanum, Fauzia January 2021 (has links)
Switching from fossil-fuel-powered vehicles to electric vehicles has become an international focus in the pursuit of combatting climate change. Regardless, the adoption of electric vehicles has been slow, in part, due to range anxiety. One solution to mitigating range anxiety is to provide a more accurate state of charge (SOC) and range estimation. SOC estimation of lithium-ion batteries for electric vehicle application is a well-researched topic, yet minimal tools and code exist online for researchers and students alike. To that end, a publicly available Kalman filter-based SOC estimation function is presented. The MATLAB function utilizes a second-order resistor-capacitor equivalent circuit model. It requires the SOC-OCV (open circuit voltage) curve, internal resistance, and equivalent circuit model battery parameters. Users can use an extended Kalman filter (EKF) or adaptive extended Kalman filter (AEKF) algorithm and temperature-dependent battery data. A practical example is illustrated using the LA92 driving cycle of a Turnigy battery at multiple temperatures ranging from -10C to 40C.
Current range estimation methods suffer from inaccuracy as factors including temperature, wind, driver behaviour, battery voltage, current, SOC, route/terrain, and much more make it difficult to model accurately. One of the most critical factors in range estimation is the battery. However, most models thus far are represented using equivalent circuit models as they are more widely researched. Another limitation is that any machine learning-based range estimation is typically based on historical driving data that require odometer readings for training.
A range estimation algorithm using a machine learning-based voltage estimation model is presented. Specifically, the long short-term memory cell in a recurrent neural network is used for the battery model. The model is trained with two datasets, classic and whole, from the experimental data of four Tesla/Panasonic 2170 battery cells. All network training is completed on SHARCNET, a resource provided by Canada Compute to researchers. The classically trained network achieved an average root mean squared error (RMSE) of 44 mV compared to 34 mV achieved by the network trained on the whole dataset. Based on the whole dataset, all test cases achieve an end range estimation of less than 5 km with an average of 0.29 km. / Thesis / Master of Applied Science (MASc)
|
203 |
Modeling, Control and State Estimation of a Roll SimulatorZagorski, Scott B. 17 December 2012 (has links)
No description available.
|
204 |
Traffic State Estimation on Swedish Highways : Model Comparison using Multisource Data / Trafiklägesuppskattning på Svenska Motorvägar : Modelljämförelse med Användning av MultisourcadataXu, Jiaqi January 2023 (has links)
Due to the escalating demand for traffic information and management, the significance of traffic state estimation, which involves the assessment of traffic conditions on road segments with limited measurement data, is increasing. Two primary estimation methods are model-driven and data-driven. The former uses traffic flow models, while the latter relies on extensive historical data to explore relationships between traffic states. Due to the uninterrupted nature of highway traffic flow, conventional model-driven approach is adopted in the study to estimate traffic information from sensing data. Data-driven approach is applied to enhance the estimation results. The project mainly focuses on comparing the estimation performance between the Particle Filter and the commonly used Extended Kalman Filter. These two methods are implemented in combination with two typical traffic flow models: Cell Transmission Model and METANET. Moreover, the project investigates the potential of using vehicle-to-everything (V2X) data in traffic state estimation, either alone or combined with traditional inductive loop detector (ILD) data. Being an emerging traffic data source, V2X communication has been recently installed and tested on the motorways near Stockholm. This study provides essential insights into how V2X data can benefit existing traffic information estimation and its performance. To evaluate the models mentioned above, the estimation algorithms and traffic flow models are implemented in a self-developed platform, which may be useful for further work. Results from simulation experiments show that Particle Filter can carry out traffic state estimation with comparable accuracy to Extended Kalman Filter. While standalone V2X speed data falls short, effective fusion methods are implemented to combine both data types, ultimately achieving the desired accuracy. These fusion methods encompass direct filtering, weighted averaging, and linear regression. Future investigations could broaden their scope to include new data sources, such as unmanned aerial vehicles (UAVs), and delve into advanced data fusion techniques, such as deep learning. / På grund av den ökande efterfrågan på trafikinformation och trafikhantering ökar betydelsen av trafiklägesuppskattning, vilket innebär bedömning av trafikförhållandena på vägsegment med begränsade mätningsdata. Två primära uppskattningsmetoder är modellbaserade och datadrivna metoder. Den förra använder trafikflödesmodeller, medan den senare förlitar sig på omfattande historiska data för att utforska samband mellan trafiklägen. På grund av det oavbrutna vägtrafikflödet antas en konventionell modellbaserad metod i studien för att uppskatta trafikinformation från sensordata. Den datadrivna metoden används för att förbättra estimatresultaten. Projektet fokuserar främst på att jämföra prestandan i uppskattningen mellan Partikelfiltret och den vanligtvis använda Extended Kalman Filter. Dessa två metoder implementeras i kombination med två typiska trafikflödesmodeller: Cell Transmission Model och METANET. Dessutom undersöker projektet möjligheterna att använda fordons-till-allt (V2X) data i trafiklägesuppskattning, antingen ensamt eller i kombination med data från traditionella induktiva slingdetektorer (ILD). Som en framväxande källa till trafikdata har V2X-kommunikation nyligen installerats och testats på motorvägarna nära Stockholm. Denna studie ger väsentlig inblick i hur V2X-data kan gynna befintlig uppskattning av trafikinformation och dess prestanda. För att utvärdera ovan nämnda modeller implementeras uppskattningsalgoritmerna och trafikflödesmodellerna i en självutvecklad plattform, vilket kan vara användbart för framtida arbete. Resultaten från simuleringsexperiment visar att Partikelfiltret kan utföra trafiklägesuppskattning med jämförbar noggrannhet jämfört med Extended Kalman Filter. Medan fristående V2X-hastighetsdata inte når hela vägen fram implementeras effektiva sammanslagningsmetoder för att kombinera båda datatyperna och slutligen uppnå önskad noggrannhet. Dessa sammanslagningsmetoder omfattar direkt filtrering, viktad medelvärdesbildning och linjär regression. Framtida undersökningar kan utvidga deras omfattning för att inkludera nya datakällor, såsom obemannade flygfordon (UAV:er), och utforska avancerade tekniker för datafusion, såsom djupinlärning.
|
205 |
Electro-Hydrostatic Actuator Fault Detection and DiagnosisSONG, YU 04 1900 (has links)
<p><h1>Abstract</h1></p> <p>As a compact, robust, and reliable power distribution method, hydraulic systems have been used for flight surface control for decades. Electro-hydrostatic Actuator (EHA) is increasingly replacing the conventional valve-controlled system for better performance, lighter weight and higher energy efficiency. The EHA is increasingly being used for flight control. As such its reliability is thereby critical important for flight safety. This research focuses on fault detection and diagnosis (FDD) for the EHA to enable predictive unscheduled maintenance when fault detected at its inception.</p> <p>An EHA prototype previously built at McMaster University is studied in this research and modified to physically simulate two faults conditions pertaining to leakage and friction. Nine different working conditions including normal running and eight fault conditions are simulated. Physical model has been derived mathematically capable of numerically simulating the fault conditions. Furthermore, for comparison, parametric model was obtained through system identification for each fault condition. This comparison revealed that parametric models are not suitable for fault detection and diagnosis due to the computation complexity.</p> <p>The FDD approach in this research uses model-based state estimation using filters. The filter based combined with the Interacting Multiple Model fault detection and diagnosis algorithm is introduced. Based on this algorithm, three FDD strategies are developed using a combination of the Extended Kalman Filter and IMM (IMM-EKF), the Smooth Variable Structure Filter with Varying Boundary and IMM (IMM-SVSF (VBL)), and the Smooth Variable Structure Filter with Fixed Boundary and IMM (IMM-SVSF (FBL)). All the three FDD strategies were implemented on the EHA prototype. Based on the results, the IMM-SVSF (VBL) provided the best performance. It detected and diagnosed faults correctly at high mode probabilities with excellent robustness to modeling uncertainties. It also was able to detect slow growing leakage fault, and predicted the changing trend of fault conditions.</p> / Master of Applied Science (MASc)
|
206 |
A Wireless Sensor for Fault Detection and Diagnosis of Internal Combustion EnginesHodgins, Sean 11 1900 (has links)
A number of non-invasive fault detection and diagnosis (FDD) techniques have been researched and have proven to have worked well in classifying faults in internal combustion engines (ICE) and other mechanical and electrical systems. These techniques are an integral step to creating more robust and accurate methods of determining where or how a fault has or will occur in such systems. These FDD techniques have the potential to not only save time avoiding a tear-down of a costly machine, but could potentially add another layer of safety in detecting and diagnosing a fault much earlier than was possible before.
Looking at the previous research methods and the systems they used to acquire this data, it is a natural progression to try and make a system which is able to encapsulate all of these ideologies into one inexpensive module capable of integrating itself into the advanced set of FDD. This thesis follows along with the development of a new wireless sensor that is developed specifically for the use in FDD for ICE and other mechanical systems. A new set of software and firmware is created for the system to be able to be incorporated into previously designed algorithms.
After creating and manufacturing the sensor it is put to the test by incorporating it into several Artificial Neural Networks (ANN) and comparing the results to previous experiments done with previous research equipment. Using vibration data acquired from a running engine to train a neural network, the wireless sensor was able to perform equally as well as its expensive counter parts. It proved to have the ability to achieve 100% accuracy in classifying specific engine faults. The performance of three ANN training algorithms, Levenberg-Marquardt (LM), extended Kalman Filter (EKF), and Smooth Variable Structure filter (SVSF), were tested and compared. Adding to the feasibility of a standalone system the wireless sensor was tested in a live environment as a method of instant ICE fault detection. / Thesis / Master of Applied Science (MASc)
|
207 |
A Positioning System for Landing a UAV on a UGV in a GNSS-Denied ScenarioWiik, Tim January 2022 (has links)
A system of an unmanned aerial vehicle (UAV) collaborating with an unmanned ground vehicle (UGV) for use in for example surveillance, reconnaissance, transport and target acquisition is studied. The project investigates the problem of estimating the relative position, velocity and orientation between the UAV and the UGV required to autonomously land the UAV on the UGV during movement. The use of global navigation satellite system (GNSS) receivers are not considered since they are sensitive to interference and spoofing attacks. The developed estimation system consists of an extended Kalman filter (EKF) using measurements from several sensors, including: a camera, barometers, inertial measurement units (IMUs) and impulse-radio ultra-wide bandwidth (IRUWB) transceivers. Primarily the use of near infrared (NIR) light emitting diodes (LEDs) attached to the UGV and a camera on the UAV is investigated. Several configurations of LED placements, and what errors to expect when measuring them with the camera, are evaluated. The performance is evaluated in both simulations and hardware sensor tests, but no live experiments that include any autonomous landing manoeuvre are conducted. The results indicate that high estimation precision can be achieved, at close range the errors in position average below 2 cm and in orientation under 0.5 degrees. However, some problems arise from the detection and identification of the LEDs. Further, if measurements of the LEDs are completely missing, the estimation precision suffers due to error accumulation in the inertial navigation. These results indicate that autonomous landing is possible, since the amount of LED measurements and consequently also the estimation precision increases as the relative position decreases.
|
208 |
Cooperative Decentralized Intersection Collision Avoidance Using Extended Kalman FilteringFarahmand, Ashil Sayyed 24 January 2009 (has links)
Automobile accidents are one of the leading causes of death and claim more than 40,000 lives annually in the US alone. A substantial portion of these accidents occur at road intersections. Stop signs and traffic signals are some of the intersection control devices used to increase safety and prevent collisions. However, these devices themselves can contribute to collisions, are costly, inefficient, and are prone to failure. This thesis proposes an adaptive, decentralized, cooperative collision avoidance (CCA) system that optimizes each vehicle's controls subject to the constraint that no collisions occur. Three major contributions to the field of collision avoidance have resulted from this research. First, a nonlinear 5-state variable vehicle model is expanded from an earlier model developed in [1]. The model accounts for internal engine characteristics and more realistically approximates vehicle behavior in comparison to idealized, linear models. Second, a set of constrained, coupled Extended Kalman Filters (EKF) are used to predict the trajectory of the vehicles approaching an intersection in real-time. The coupled filters support decentralized operation and ensure that the optimization algorithm bases its decisions on good, reliable estimates. Third, a vehicular network based on the new WAVE standard is presented that provides cooperative capabilities by enabling intervehicle communication. The system is simulated against today's common intersection control devices and is shown to be superior in minimizing average vehicle delay. / Master of Science
|
209 |
Simultaneous Aircraft Localization and Mapping using Signals of Opportunity and Inverse Depth ParametrizationRamsberg, Oskar, Wigström, Elin January 2024 (has links)
In modern combat aircraft, the most common localization method integrates a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS). Although GNSS is the optimal choice for navigation, there are situations when the GNSS satellite signal is unavailable. This can happen due to various reasons such as jamming, physical obstacles, or technical failures. An alternative method to GNSS is utilizing Signals of Opportunity (SOP), which leverages signals not intended for navigation, such as those from cellular towers. These signals are transmitted from non-controllable sources, and challenges may arise due to the lack of guarantee regarding their quality and availability. Therefore, it is crucial that any estimation method utilizing SOP is robust to ensure accurate aircraft localization. This thesis investigates three different localization approaches to address this challenge. This study explores SOP sources with both known and unknown positions. For known signal source positions, an Extended Kalman Filter (EKF) based solution is utilized as a baseline to evaluate how well unknown signal sources can be used to estimate the aircraft's location. To address the challenge of unknown signal source positions, an EKF combined with a Simultaneous Localization and Mapping (SLAM) method, referred to as EKF SLAM, is used. In this case, the sources are introduced through two different approaches. The first approach, undelayed initialization, introduces the signal source directly when observed. The second approach, delayed initialization, involves inverse depth parameterization (IDP) and preprocessing of the signal source position before fully introducing it into the aircraft system. While both approaches outperform an unassisted INS approach, they do not achieve the same level of performance as when the source positions are known. Moreover, various factors, including the aircraft's trajectory, measurement noise, measurement frequency, and the initial covariance of new landmarks, influence the performance of the EKF SLAM approaches. Additionally, delayed initialization is strongly influenced by a threshold assessing landmark position estimate linearity, underscoring its sensitivity to accuracy. The concept behind delayed initialization aims to reduce the error of the signal source position before it is introduced to the system. This method has been proven to significantly reduce the signal source position error. However, its robustness is influenced by several factors, including the parallax angle, sudden changes in the aircraft's direction, and particularly the initial covariance of a landmark estimate. The accuracy of the aircraft's position is crucial, resulting in a trade-off between preprocessing and rapidly initializing a signal source position to the aircraft system. In contrast, undelayed initialization is less sensitive to trajectory changes, even though it introduces the signal sources with greater initial error. There is a significant difference in computational time when comparing known and unknown sources. As the number of sources increases, the computational time for unknown sources is more affected than for known sources. The delayed source initialization method increases computational time due to its preprocessing, especially as more sources are used. Conversely, initializing sources directly reduces the computational time, as no preprocessing is required. / I moderna stridsflygplan är den vanligaste lokaliseringsmetoden att integrera ett Global Navigation Satellite System (GNSS) med ett Inertial Navigation System (INS). Även om GNSS är det optimala valet för navigation finns det situationer när GNSS-satellitsignalen inte är tillgänglig. Detta kan inträffa på grund av olika orsaker som störningar, fysiska hinder eller tekniska fel. En alternativ metod till GNSS är att använda Signals of Opportunity (SOP), som utnyttjar signaler som inte är avsedda för navigation, till exempel de från mobilmaster. Dessa signaler kommer från okontrollerbara källor, vilket kan medföra utmaningar på grund av att deras kvalitet och tillgänglighet inte kan garanteras. Därför är det viktigt att varje lokaliseringsmetod som använder SOP är robust för att säkerställa en bra och korrekt flygplans positionering. Detta examensarbete undersöker tre olika lokaliseringsmetoder för att hantera denna utmaning. Denna studie utforskar SOP-källor med både kända och okända positioner. För kända positioner används en lösning baserad på ett Extended Kalman Filter (EKF) som en baslinje för att utvärdera hur väl okända signalkällor kan användas för att uppskatta flygplanets position. För att hantera utmaningen med okända signalkällors positioner används ett EKF kombinerad med en metod vid namn Simultaneous Localization and Mapping (SLAM), även kallad EKF SLAM. I detta fall introduceras källorna genom två olika tillvägagångssätt. Det första tillvägagångssättet, ofördröjd initialisering, introducerar signalkällan direkt när den observeras. Det andra tillvägagångssättet, fördröjd initialisering, involverar inverse depth parameterization (IDP) och förbearbetning av signalkällans position innan den introduceras i flygplanets lokaliseringssystem. Även om båda tillvägagångssätten presterar bättre än en oassisterad INS-metod uppnår de inte samma prestandanivå som när källornas position är kända. Dessutom påverkar olika faktorer prestandan hos EKF SLAM-metoderna, vilka främst är flygplanets flygbana, mätbrus, mätfrekvens och den initiala kovariansen av nya landmärken. Dessutom påverkas fördröjd initialisering starkt av en tröskel som bedömer linjäritet hos landmärkes positionen, vilket understryker dess känslighet för noggrannhet. Konceptet bakom fördröjd initialisering syftar till att minska felet i signalkällans position innan den introduceras i lokaliseringssystemet. Denna metod har visat sig kunna minska felet i signalkällans position avsevärt. Emellertid påverkas dess robusthet av flera faktorer, inklusive parallaxvinkeln, plötsliga förändringar i flygplanets riktning och särskilt den initiala kovariansen av uppskattningen av ett landmärkes position. Noggrannheten i flygplanets position är avgörande, vilket resulterar i en avvägning mellan förbearbetning och snabb initialisering av en signalkällas position till flygplanets lokaliseringssystem. Till skillnad från fördröjd initialisering är ofördröjd initialisering mindre känslig för förändringar i flygbanan, även om den introducerar signalkällorna med större initialt fel. Det finns en anmärkningsvärd skillnad i beräkningstid när man jämför kända och okända källors. När antalet källor ökar påverkas beräkningstiden för okända källor mer än för kända källor. Den fördröjda källinitialiseringsmetoden ökar beräkningstiden på grund av dess förbearbetning, särskilt när många källor används. Däremot minskar beräkningstiden när källor initialiseras direkt, eftersom ingen förbearbetning krävs.
|
210 |
Estimation and Mapping of Ship Air Wakes using RC Helicopters as a Sensing PlatformKumar, Anil 24 April 2018 (has links)
This dissertation explores the applicability of RC helicopters as a tool to map wind conditions. This dissertation presents the construction of a robust instrumentation system capable of wireless in-situ measurement and mapping of ship airwake. The presented instrumentation system utilizes an RC helicopter as a carrier platform and uses the helicopter's dynamics for spatial 3D mapping of wind turbulence. The system was tested with a YP676 naval training craft to map ship airwake generated in controlled heading wind conditions. Novel system modeling techniques were developed to estimate the dynamics of an instrumented RC helicopter, in conjunction with onboard sensing, to estimate spatially varying (local) wind conditions. The primary problem addressed in this dissertation is the reliable estimation and separation of pilot induced dynamics from the system measurements, followed by the use of the dynamics residuals/discrepancies to map the wind conditions.
This dissertation presents two different modelling approaches to quantify ship airwake using helicopter dynamics. The helicopter systems were characterized using both machine learning and analytical aerodynamic modelling approaches. In the machine learning based approaches, neural networks, along with other models, were trained then assessed in their capability to model dynamics from pilot inputs and other measured helicopter states. The dynamics arising from the wind conditions were fused with the positioning estimates of the helicopter to generate ship airwake maps which were compared against CFD generated airwake patterns. In the analytical modelling based approach, the dynamic response of an RC helicopter to a spatially varying parameterized wind field was modeled using a 30-state nonlinear ordinary differential equation-based dynamic system, while capturing essential elements of the helicopter dynamics. The airwake patterns obtained from both types of approach were compared against anemometrically produced wind maps of turbulent wind conditions artificially generated in a controlled indoor environment.
Novel hardware architecture was developed to acquire data critical for the operation and calibration of the proposed system. The mechatronics design of three prototypes of the proposed system were presented and performance evaluated using experimental testing with a modified YP676 naval training vessel in the Chesapeake Bay area. In closing, qualitative analysis of these systems along with potential applications and improvements are discussed to conclude this dissertation. / Ph. D. / Ship airwake is a trail of wind turbulence left behind the superstructure of cruising naval vessels and are considered as a serious safety concern for aviators during onboard operations. Prior knowledge of the airwake distribution around the ship can alert pilots of possible hazards ahead of time and mitigate operational risks during the launch and recovery of the aircraft on the flight deck.
This dissertation presents a novel application of Remote Control (RC) helicopters as tools to measure and map ship airwake. This dissertation presents two approaches to extract wind conditions from helicopter dynamics: (1) using machine learning based modeling, and (2) using analytic aerodynamic modeling-based estimation. Machine Learning is a modern engineering tool to model and simulate any system using experimental data alone. Under the machine learning based approach, the helicopter’s response to pilot inputs was modeled using multiple algorithms, with experimental flight data collected the absence of the ship airwake. With an assumption of capturing all the aerodynamic effects with the machine learning algorithms, the deviations in the dynamics estimates during testing environment were used to characterize and map ship airwake. In contrast to the machine learning model, the analytical approach modeled all critical aerodynamic processes of the RC helicopter as functions of pilot inputs and wind conditions using well defined physics laws, thus eliminating any need for training data. This approach predicts wind conditions on the basis of the model’s capability to match the estimates of helicopter dynamics to the actual measurements.
Both presented approaches were tested on wind conditions created in indoor and outdoor environments. The performance of the proposed system was evaluated in experimental testing with a modified YP676 naval training vessel in the Chesapeake Bay area. The dissertation also presents the mechatronic design details of the novel hardware prototypes and subsystems used in the various studies and experiments. Finally, qualitative analysis of these systems along with their potential applications and improvements are discussed to conclude this dissertation.
|
Page generated in 0.0853 seconds