• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 145
  • 34
  • 20
  • 10
  • 5
  • 5
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 256
  • 256
  • 233
  • 69
  • 68
  • 59
  • 42
  • 39
  • 39
  • 37
  • 31
  • 31
  • 29
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Kalman Filter Based Approach : Real-time Control-based Human Motion Prediction in Teleoperation / Kalman Filter baserad metod : Realtids uppskattningar av Kontrollbaserad Mänsklig Rörelse i Teleoperationen

Fan, Zheyu Jerry January 2016 (has links)
This work is to investigate the performance of two Kalman Filter Algorithms, namely Linear Kalman Filter and Extended Kalman Filter on control-based human motion prediction in a real-time teleoperation. The Kalman Filter Algorithm has been widely used in research areas of motion tracking and GPS-navigation. However, the potential of human motion prediction by utilizing this algorithm is rarely being mentioned. Combine with the known issue - the delay issue in today’s teleoperation services, the author decided to build a prototype of simple teleoperation model based on the Kalman Filter Algorithm with the aim of eliminated the unsynchronization between the user’s inputs and the visual frames, where all the data were transferred over the network. In the first part of the thesis, two types of Kalman Filter Algorithm are applied on the prototype to predict the movement of the robotic arm based on the user’s motion applied on a Haptic Device. The comparisons in performance among the Kalman Filters have also been focused. In the second part, the thesis focuses on optimizing the motion prediction which based on the results of Kalman filtering by using the smoothing algorithm. The last part of the thesis examines the limitation of the prototype, such as how much the delays are accepted and how fast the movement speed of the Phantom Haptic can be, to still be able to obtain reasonable predations with acceptable error rate.   The results show that the Extended Kalman Filter has achieved more advantages in motion prediction than the Linear Kalman Filter during the experiments. The unsynchronization issue has been effectively improved by applying the Kalman Filter Algorithm on both state and measurement models when the latency is set to below 200 milliseconds. The additional smoothing algorithm further increases the accuracy. More important, it also solves shaking issue on the visual frames on robotic arm which is caused by the wavy property of the Kalman Filter Algorithm. Furthermore, the optimization method effectively synchronizes the timing when robotic arm touches the interactable object in the prediction.   The method which is utilized in this research can be a good reference for the future researches in control-based human motion tracking and prediction. / Detta arbete fokuserar på att undersöka prestandan hos två Kalman Filter Algoritmer, nämligen Linear Kalman Filter och Extended Kalman Filter som används i realtids uppskattningar av kontrollbaserad mänsklig rörelse i teleoperationen. Dessa Kalman Filter Algoritmer har används i stor utsträckning forskningsområden i rörelsespårning och GPS-navigering. Emellertid är potentialen i uppskattning av mänsklig rörelse genom att utnyttja denna algoritm sällan nämnas. Genom att kombinera med det kända problemet – fördröjningsproblem i dagens teleoperation tjänster beslutar författaren att bygga en prototyp av en enkel teleoperation modell vilket är baserad på Kalman Filter algoritmen i syftet att eliminera icke-synkronisering mellan användarens inmatningssignaler och visuella information, där alla data överfördes via nätverket. I den första delen av avhandlingen appliceras både Kalman Filter Algoritmer på prototypen för att uppskatta rörelsen av robotarmen baserat på användarens rörelse som anbringas på en haptik enhet. Jämförelserna i prestandan bland de Kalman Filter Algoritmerna har också fokuserats. I den andra delen fokuserar avhandlingen på att optimera uppskattningar av rörelsen som baserat på resultaten av Kalman-filtrering med hjälp av en utjämningsalgoritm. Den sista delen av avhandlingen undersökes begräsning av prototypen, som till exempel hur mycket fördröjningar accepteras och hur snabbt den haptik enheten kan vara, för att kunna erhålla skäliga uppskattningar med acceptabel felfrekvens.   Resultaten visar att den Extended Kalman Filter har bättre prestandan i rörelse uppskattningarna än den Linear Kalman Filter under experimenten. Det icke-synkroniseringsproblemet har förbättrats genom att tillämpa de Kalman Filter Algoritmerna på både statliga och värderingsmodeller när latensen är inställd på under 200 millisekunder. Den extra utjämningsalgoritmen ökar ytterligare noggrannheten. Denna algoritm löser också det skakande problem hos de visuella bilder på robotarmen som orsakas av den vågiga egenskapen hos Kalman Filter Algoritmen. Dessutom effektivt synkroniserar den optimeringsmetoden tidpunkten när robotarmen berör objekten i uppskattningarna.   Den metod som används i denna forskning kan vara en god referens för framtida undersökningar i kontrollbaserad rörelse- spåning och uppskattning.
232

Trajectory and Pulse Optimization for Active Towed Array Sonar using MPC and Information Measures

Ekdahl Filipsson, Fabian January 2020 (has links)
In underwater tracking and surveillance, the active towed array sonar presents a way of discovering and tracking adversarial submerged targets that try to stay hidden. The configuration consist of listening and emitting hydrophones towed behind a ship. Moreover, it has inherent limitations, and the characteristics of sound in the ocean are complex. By varying the pulse form emitted and the trajectory of the ship the measurement accuracy may be improved. This type of optimization constitutes a sensor management problem. In this thesis, a model of the tracking scenario has been constructed derived from Cramér-Rao bound analyses. A model predictive control approach together with information measures have been used to optimize a filter's estimated state of the target. For the simulations, the MATLAB environment has been used. Different combinations of decision horizons, information measures and variations of the Kalman filter have been studied. It has been found that the accuracy of the Extended Kalman filter is too low to give consistent results given the studied information measures. However, the Unscented Kalman filter is sufficient for this purpose.
233

Commande robuste à haute performance sans capteur de position d'alterno-démarreurs à grande vitesse avec un fort couple à l'arrêt pour les avions plus électriques / Robust sensorless control of high-speed Starter/Generators with high starting torque for the More Electric Aircraft

Beciu, Andreea-Livia 11 October 2018 (has links)
Les avionneurs expriment le besoin de développement de l’avion plus « électrique ». Cela se traduit par des besoins nouveaux en matière de systèmes de motorisation électrique, en termes de puissance à fournir et de partage de ressources matérielles en vue de minimiser la masse embarquée et les coûts. Parmi les études en cours sur l’évolution des machines tournantes, un intérêt particulier porte sur le développement des alterno-démarreurs de type machines synchrones sans balais et à plusieurs étages (BSSG). Celles-ci sont susceptibles de fournir un fort couple lors des phases de démarrage des réacteurs auxquelles elles sont associées. Pour ce faire, la connaissance, à tout moment, de la position du rotor est essentielle. Cependant, l'ajout d’un capteur dédié impacte la conception de la machine, rajoutant du volume, du câblage et augmentant le coût. La réalisation d'une commande dite « sensorless » permettrait de s'affranchir de l'utilisation d'un tel capteur et de simplifier le design des alterno-démarreurs.A partir d'une modélisation fine de la machine, cette thèse étudie les conditions dans lesquelles une telle commande est réalisable et analyse plusieurs techniques permettant d'y parvenir. Une nouvelle méthode d'estimation de la position du rotor, spécifique aux BSSG est proposée, puis illustrée avec des résultats expérimentaux. Cette technique est basée sur le traitement des composantes harmoniques existantes naturellement au stator de la machine et permet l'estimation de la position à l'arrêt et à très basse vitesse. Afin d'étendre l'estimation sur toute la plage de vitesse, une étude d'estimation de position par un observateur d'état à base du modèle complet de la machine en considérant les harmonique injectés (ou existantes) dans les courants du stator est proposée. Cet observateur peut s’appliquer à la machine synchrone à trois étages mais aussi à toute machine synchrone. Dans cette étude, son fonctionnement est illustré sur une machine synchrone à aimants permanents. / The aircraft manufacturers express the need to develop a more "electric" aircraft. This brings forward new requirements for the electric drive systems in terms of increasing the available on-board power and resource sharing in order to optimize the overall mass and cost. Among the ongoing studies on the evolution of motor drives, a particular interest is given to the development of multi-level brushless synchronous starter/generators (BSSG). These drives are likely to provide the high torque required to start-up the reactors to which they are associated. For this purpose, the knowledge, at any time, of the rotor position is essential. However, adding a dedicated sensor impacts on the design of the machine, increasing volume, cabling needs and cost. For this purpose, investigating on “sensorless” control laws will permit to avoid using such a sensor and to simplify the design of the Starter/Generators.Using a fine modelling of the machine, this work studies the conditions of feasibility for sensorless control and analyzes several techniques for this purpose. A new method of estimation of the shaft-position, particular to the BSSG architecture is proposed and then illustrated with experimental results. This technique is based on the processing of the existing harmonic components naturally in the stator of the machine and allows the estimation of the position at standstill and the very low speed. To extend the estimation to the whole speed range, a study of position estimation using a state observer using the complete model of the machine considering the knowledge of the existing (or injected) harmonic components in the stator currents is proposed. This observer can be applied to the brushless synchronous starter/generator but also on generic synchronous machines. In this study, its performance is illustrated on a permanent magnet synchronous machine.
234

Implementation of Bolt Detection and Visual-Inertial Localization Algorithm for Tightening Tool on SoC FPGA / Implementering av bultdetektering och visuell tröghetslokaliseringsalgoritm för åtdragningsverktyg på SoC FPGA

Al Hafiz, Muhammad Ihsan January 2023 (has links)
With the emergence of Industry 4.0, there is a pronounced emphasis on the necessity for enhanced flexibility in assembly processes. In the domain of bolt-tightening, this transition is evident. Tools are now required to navigate a variety of bolts and unpredictable tightening methodologies. Each bolt, possessing distinct tightening parameters, necessitates a specific sequence to prevent issues like bolt cross-talk or unbalanced force. This thesis introduces an approach that integrates advanced computing techniques with machine learning to address these challenges in the tightening areas. The primary objective is to offer edge computation for bolt detection and tightening tools' precise localization. It is realized by leveraging visual-inertial data, all encapsulated within a System-on-Chip (SoC) Field Programmable Gate Array (FPGA). The chosen approach combines visual information and motion detection, enabling tools to quickly and precisely do the localization of the tool. All the computing is done inside the SoC FPGA. The key element for identifying different bolts is the YOLOv3-Tiny-3L model, run using the Deep-learning Processor Unit (DPU) that is implemented in the FPGA. In parallel, the thesis employs the Error-State Extended Kalman Filter (ESEKF) algorithm to fuse the visual and motion data effectively. The ESEKF is accelerated via a full implementation in Register Transfer Level (RTL) in the FPGA fabric. We examined the empirical outcomes and found that the visual-inertial localization exhibited a Root Mean Square Error (RMSE) position of 39.69 mm and a standard deviation of 9.9 mm. The precision in orientation determination yields a mean error of 4.8 degrees, offset by a standard deviation of 5.39 degrees. Notably, the entire computational process, from the initial bolt detection to its final localization, is executed in 113.1 milliseconds. This thesis articulates the feasibility of executing bolt detection and visual-inertial localization using edge computing within the SoC FPGA framework. The computation trajectory is significantly streamlined by harnessing the adaptability of programmable logic within the FPGA. This evolution signifies a step towards realizing a more adaptable and error-resistant bolt-tightening procedure in industrial areas. / Med framväxten av Industry 4.0, finns det en uttalad betoning på nödvändigheten av ökad flexibilitet i monteringsprocesser. Inom området bultåtdragning är denna övergång tydlig. Verktyg krävs nu för att navigera i en mängd olika bultar och oförutsägbara åtdragningsmetoder. Varje bult, som har distinkta åtdragningsparametrar, kräver en specifik sekvens för att förhindra problem som bultöverhörning eller obalanserad kraft. Detta examensarbete introducerar ett tillvägagångssätt som integrerar avancerade datortekniker med maskininlärning för att hantera dessa utmaningar i skärpningsområdena. Det primära målet är att erbjuda kantberäkning för bultdetektering och åtdragningsverktygs exakta lokalisering. Det realiseras genom att utnyttja visuella tröghetsdata, allt inkapslat i en System-on-Chip (SoC) Field Programmable Gate Array (FPGA). Det valda tillvägagångssättet kombinerar visuell information och rörelsedetektering, vilket gör det möjligt för verktyg att snabbt och exakt lokalisera verktyget. All beräkning sker inuti SoC FPGA. Nyckelelementet för att identifiera olika bultar är YOLOv3-Tiny-3L-modellen, som körs med hjälp av Deep-learning Processor Unit (DPU) som är implementerad i FPGA. Parallellt använder avhandlingen algoritmen Error-State Extended Kalman Filter (ESEKF) för att effektivt sammansmälta visuella data och rörelsedata. ESEKF accelereras via en fullständig implementering i Register Transfer Level (RTL) i FPGA-strukturen. Vi undersökte de empiriska resultaten och fann att den visuella tröghetslokaliseringen uppvisade en Root Mean Square Error (RMSE) position på 39,69 mm och en standardavvikelse på 9,9 mm. Precisionen i orienteringsbestämningen ger ett medelfel på 4,8 grader, kompenserat av en standardavvikelse på 5,39 grader. Noterbart är att hela beräkningsprocessen, från den första bultdetekteringen till dess slutliga lokalisering, exekveras på 113,1 millisekunder. Denna avhandling artikulerar möjligheten att utföra bultdetektering och visuell tröghetslokalisering med hjälp av kantberäkning inom SoC FPGA-ramverket. Beräkningsbanan är avsevärt effektiviserad genom att utnyttja anpassningsförmågan hos programmerbar logik inom FPGA. Denna utveckling innebär ett steg mot att förverkliga en mer anpassningsbar och felbeständig skruvdragningsprocedur i industriområden.
235

Sensorless control of brushless synchronous starter generator including sandstill and low speed region for aircraft application / Commande sans capteurs mécaniques de la machine synchrone à trois étages à faible vitesse pour une application aéronautique

Maalouf Haddad, Amira 03 March 2011 (has links)
In More Electric Aircraft, different power system activities are attributed to electrical means such as the start-up of the main engine. In this context, the study of the sensorless control of the Brushless Synchronous Starter Generator (BSSG) that is used to electrically start the main engine is revealed to be a very interesting issue. For long time, the elimination of the mechanical sensor was highly recommended for reliability, cost, weight, integration issues.Hence, this work aims to transpose the results obtained in the research area to an avionic testbench. It presents an adaptive sensorless technique to use when electrically starting the main engine of the aircraft. This is achieved by elaborating three different methods selected depending on the speed of the machine and based on the :- injection of a high frequency signal- use of the back-emf of the Permanent Magnet Generator (PMG)- use of the extended Kalman Filter EKFIn this work, it is shown that the …first method gives good position estimation results from standstill up to 8% of the rated speed. Then, the back-emfs of the PMG are used to detect the position of the BSSG when the speed exceeds the 8% of the rated speed. Good results are observed with this method at medium and high speed.For redundancy reasons, the EKF was also used in this work. Thus, the estimated position can be delivered via two different estimation algorithms in medium and high speed region.The implementation of the algorithm was achieved on an FPGA board since the latter can ensure a very tiny execution time. The fastness of the treatment ensures quasi-instantaneous position estimation and does not practically introduce any phase lag in the position estimation. / Aujourd'hui, l'aviation est en train de vivre des évolutions technologiques concernant surtout l'attribution de différentes fonctionnalités aux équipements électriques et ceci au détriment d'équipements hydrauliques et mécaniques assurant les mêmes fonctionnalités.Dans le cadre de l'avion plus électrique, le démarrage électrique sans capteurs mécaniques de la turbine de l'avion préoccupe les avionneurs de nos jours. Les problèmes introduits par ce capteur ont été identifiés : problèmes de coût et de poids, problèmes de fiabilité et d'intégration.Ce travail présente alors une commande sans capteurs pour la machine synchrone à trois étages à utiliser durant le démarrage électrique de l'avion. Ceci est réalisé avec trois méthodes de détection de la position selon la vitesse de rotation, basées sur :- l'injection d'un signal à haute fréquence- l'utilisation d'un filtre de Kalman étendu FKE- les fém. du PMG (Permanent Magnet Generator) La première méthode donne de bons résultats d'estimation depuis l'arrêt jusqu'à 8% de la vitesse nominale de la machine. Au-delà de cette vitesse, es valeurs des fém. du PMG deviennent assez élevées pour être utilisées dans l'estimation de la position. De bons résultats sont obtenus à moyenne et haute vitesse.Pour des questions de redondance, le FKE est aussi utilisé. Ainsi, la position estimée peut être fournie par l'un des deux algorithmes à moyenne et haute vitesse.L'implémentation de ces algorithmes est réalisée via une carte FPGA étant donné que celui-ci garantit un temps d'exécution. La rapidité de traitement garantit une estimation de la position quasi-instantanée et donc n'introduit pratiquement pas des retards dans l'estimation.
236

Relative Navigation of Micro Air Vehicles in GPS-Degraded Environments

Wheeler, David Orton 01 December 2017 (has links)
Most micro air vehicles rely heavily on reliable GPS measurements for proper estimation and control, and therefore struggle in GPS-degraded environments. When GPS is not available, the global position and heading of the vehicle is unobservable. This dissertation establishes the theoretical and practical advantages of a relative navigation framework for MAV navigation in GPS-degraded environments. This dissertation explores how the consistency, accuracy, and stability of current navigation approaches degrade during prolonged GPS dropout and in the presence of heading uncertainty. Relative navigation (RN) is presented as an alternative approach that maintains observability by working with respect to a local coordinate frame. RN is compared with several current estimation approaches in a simulation environment and in hardware experiments. While still subject to global drift, RN is shown to produce consistent state estimates and stable control. Estimating relative states requires unique modifications to current estimation approaches. This dissertation further provides a tutorial exposition of the relative multiplicative extended Kalman filter, presenting how to properly ensure observable state estimation while maintaining consistency. The filter is derived using both inertial and body-fixed state definitions and dynamics. Finally, this dissertation presents a series of prolonged flight tests, demonstrating the effectiveness of the relative navigation approach for autonomous GPS-degraded MAV navigation in varied, unknown environments. The system is shown to utilize a variety of vision sensors, work indoors and outdoors, run in real-time with onboard processing, and not require special tuning for particular sensors or environments. Despite leveraging off-the-shelf sensors and algorithms, the flight tests demonstrate stable front-end performance with low drift. The flight tests also demonstrate the onboard generation of a globally consistent, metric, and localized map by identifying and incorporating loop-closure constraints and intermittent GPS measurements. With this map, mission objectives are shown to be autonomously completed.
237

Modeling, control, and estimation of flexible, aerodynamic structures

Ray, Cody W. 19 April 2012 (has links)
Engineers have long been inspired by nature's flyers. Such animals navigate complex environments gracefully and efficiently by using a variety of evolutionary adaptations for high-performance flight. Biologists have discovered a variety of sensory adaptations that provide flow state feedback and allow flying animals to feel their way through flight. A specialized skeletal wing structure and plethora of robust, adaptable sensory systems together allow nature's flyers to adapt to myriad flight conditions and regimes. In this work, motivated by biology and the successes of bio-inspired, engineered aerial vehicles, linear quadratic control of a flexible, morphing wing design is investigated, helping to pave the way for truly autonomous, mission-adaptive craft. The proposed control algorithm is demonstrated to morph a wing into desired positions. Furthermore, motivated specifically by the sensory adaptations organisms possess, this work transitions to an investigation of aircraft wing load identification using structural response as measured by distributed sensors. A novel, recursive estimation algorithm is utilized to recursively solve the inverse problem of load identification, providing both wing structural and aerodynamic states for use in a feedback control, mission-adaptive framework. The recursive load identification algorithm is demonstrated to provide accurate load estimate in both simulation and experiment. / Graduation date: 2012
238

Vision-based navigation and mapping for flight in GPS-denied environments

Wu, Allen David 15 November 2010 (has links)
Traditionally, the task of determining aircraft position and attitude for automatic control has been handled by the combination of an inertial measurement unit (IMU) with a Global Positioning System (GPS) receiver. In this configuration, accelerations and angular rates from the IMU can be integrated forward in time, and position updates from the GPS can be used to bound the errors that result from this integration. However, reliance on the reception of GPS signals places artificial constraints on aircraft such as small unmanned aerial vehicles (UAVs) that are otherwise physically capable of operation in indoor, cluttered, or adversarial environments. Therefore, this work investigates methods for incorporating a monocular vision sensor into a standard avionics suite. Vision sensors possess the potential to extract information about the surrounding environment and determine the locations of features or points of interest. Having mapped out landmarks in an unknown environment, subsequent observations by the vision sensor can in turn be used to resolve aircraft position and orientation while continuing to map out new features. An extended Kalman filter framework for performing the tasks of vision-based mapping and navigation is presented. Feature points are detected in each image using a Harris corner detector, and these feature measurements are corresponded from frame to frame using a statistical Z-test. When GPS is available, sequential observations of a single landmark point allow the point's location in inertial space to be estimated. When GPS is not available, landmarks that have been sufficiently triangulated can be used for estimating vehicle position and attitude. Simulation and real-time flight test results for vision-based mapping and navigation are presented to demonstrate feasibility in real-time applications. These methods are then integrated into a practical framework for flight in GPS-denied environments and verified through the autonomous flight of a UAV during a loss-of-GPS scenario. The methodology is also extended to the application of vehicles equipped with stereo vision systems. This framework enables aircraft capable of hovering in place to maintain a bounded pose estimate indefinitely without drift during a GPS outage.
239

Methods For Forward And Inverse Problems In Nonlinear And Stochastic Structural Dynamics

Saha, Nilanjan 11 1900 (has links)
A main thrust of this thesis is to develop and explore linearization-based numeric-analytic integration techniques in the context of stochastically driven nonlinear oscillators of relevance in structural dynamics. Unfortunately, unlike the case of deterministic oscillators, available numerical or numeric-analytic integration schemes for stochastically driven oscillators, often modelled through stochastic differential equations (SDE-s), have significantly poorer numerical accuracy. These schemes are generally derived through stochastic Taylor expansions and the limited accuracy results from difficulties in evaluating the multiple stochastic integrals. We propose a few higher-order methods based on the stochastic version of transversal linearization and another method of linearizing the nonlinear drift field based on a Girsanov change of measures. When these schemes are implemented within a Monte Carlo framework for computing the response statistics, one typically needs repeated simulations over a large ensemble. The statistical error due to the finiteness of the ensemble (of size N, say)is of order 1/√N, which implies a rather slow convergence as N→∞. Given the prohibitively large computational cost as N increases, a variance reduction strategy that enables computing accurate response statistics for small N is considered useful. This leads us to propose a weak variance reduction strategy. Finally, we use the explicit derivative-free linearization techniques for state and parameter estimations for structural systems using the extended Kalman filter (EKF). A two-stage version of the EKF (2-EKF) is also proposed so as to account for errors due to linearization and unmodelled dynamics. In Chapter 2, we develop higher order locally transversal linearization (LTL) techniques for strong and weak solutions of stochastically driven nonlinear oscillators. For developing the higher-order methods, we expand the non-linear drift and multiplicative diffusion fields based on backward Euler and Newmark expansions while simultaneously satisfying the original vector field at the forward time instant where we intend to find the discretized solution. Since the non-linear vector fields are conditioned on the solution we wish to determine, the methods are implicit. We also report explicit versions of such linearization schemes via simple modifications. Local error estimates are provided for weak solutions. Weak linearized solutions enable faster computation vis-à-vis their strong counterparts. In Chapter 3, we propose another weak linearization method for non-linear oscillators under stochastic excitations based on Girsanov transformation of measures. Here, the non-linear drift vector is appropriately linearized such that the resulting SDE is analytically solvable. In order to account for the error in replacing of non-linear drift terms, the linearized solutions are multiplied by scalar weighting function. The weighting function is the solution of a scalar SDE(i.e.,Radon-Nikodym derivative). Apart from numerically illustrating the method through applications to non-linear oscillators, we also use the Girsanov transformation of measures to correct the truncation errors in lower order discretizations. In order to achieve efficiency in the computation of response statistics via Monte Carlo simulation, we propose in Chapter 4 a weak variance reduction strategy such that the ensemble size is significantly reduced without seriously affecting the accuracy of the predicted expectations of any smooth function of the response vector. The basis of the variance reduction strategy is to appropriately augment the governing system equations and then weakly replace the associated stochastic forcing functions through variance-reduced functions. In the process, the additional computational cost due to system augmentation is generally far less besides the accrued advantages due to a drastically reduced ensemble size. The variance reduction scheme is illustrated through applications to several non-linear oscillators, including a 3-DOF system. Finally, in Chapter 5, we exploit the explicit forms of the LTL techniques for state and parameters estimations of non-linear oscillators of engineering interest using a novel derivative-free EKF and a 2-EKF. In the derivative-free EKF, we use one-term, Euler and Newmark replacements for linearizations of the non-linear drift terms. In the 2-EKF, we use bias terms to account for errors due to lower order linearization and unmodelled dynamics in the mathematical model. Numerical studies establish the relative advantages of EKF-DLL as well as 2-EKF over the conventional forms of EKF. The thesis is concluded in Chapter 6 with an overall summary of the contributions made and suggestions for future research.
240

Novel Sub-Optimal And Particle Filtering Strategies For Identification Of Nonlinear Structural Dynamical Systems

Ghosh, Shuvajyoti 01 1900 (has links)
Development of dynamic state estimation techniques and their applications in problems of identification in structural engineering have been taken up. The thrust of the study has been the identification of structural systems that exhibit nonlinear behavior, mainly in the form of constitutive and geometric nonlinearities. Methods encompassing both linearization based strategies and those involving nonlinear filtering have been explored. The applications of derivative-free locally transversal linearization (LTL) and multi-step transversal linearization (MTrL) schemes for developing newer forms of the extended Kalman filter (EKF) algorithm have been explored. Apart from the inherent advantages of these methods in avoiding gradient calculations, the study also demonstrates their superior numerical accuracy and considerably less sensitivity to the choice of step sizes. The range of numerical illustrations covers SDOF as well as MDOF oscillators with time-invariant parameters and those with discontinuous temporal variations. A new form of the sequential importance sampling (SIS) filter is developed which explores the scope of the existing SIS filters to cover nonlinear measurement equations and more general forms of noise involving multiplicative and (or) Gaussian/ non-Gaussian noises. The formulation of this method involves Ito-Taylor’s expansions of the nonlinear functions in the measurement equation and the development of the ideal ispdf while accounting for the non-Gaussian terms appearing in the governing equation. Numerical illustrations on parameter identification of a few nonlinear oscillators and a geometrically nonlinear Euler–Bernoulli beam reveal a remarkably improved performance of the proposed methods over one of the best known algorithms, i.e. the unscented particle filter. The study demonstrates the applicability of diverse range of mathematical tools including Magnus’ functional expansions, theory of SDE-s, Ito-Taylor’s expansions and simulation and characterization of the non-Gaussian random variables to the problem of nonlinear structural system identification.

Page generated in 0.0783 seconds