61 |
Observatörer för skattning av verktygspositionen hos en industrirobot : Design, simulering och experimentell verifiering / Observers for estimation of the tool position for an industrial robot : Design, simulation and experimental verificationHenriksson, Robert January 2009 (has links)
This thesis approaches the problem of estimating the arm angles of an industrial robot with flexibilities in joints and links. Due to cost-cutting efforts in the industrial robots industry, weaker components and more cost-effective structures have been introduced which in turn has led to problems with flexibilities, nonlinearities and friction. In order to handle these challenging dynamic problems and achieve high accuracy this study introduces state observers to estimate the tool position.The observers use measurements of the motor angles and an accelerometer and the different evaluated observers are based on an Extended Kalman Filter and a deterministic variant. They have been evaluated in experiments on an industrial robot with two degrees of freedom. The experimental verification shows that the state estimates can be highly accurate for medium frequency motions, ranging from 3-30Hz. For this interval the estimate were also robust to model inaccuracies.The estimation of low-frequency motions was relatively poor, due to problemswith drift for the accelerometer, and it also showed a significant dependence on the accuracy of the model. For industrial robots it is mainly the medium frequency motions which are hard to estimate with existing techniques and these observers therefore carries great potential for increased precision.
|
62 |
Sensorless Control of a Permanent Magnet Synchronous MotorPetersson, Fredrik January 2009 (has links)
A permanent magnet synchronous motor is traditionally controlled from measured values of the angular velocity and position of the rotor. However, there is a wish from SAAB Avitronics to investigate the possibility of estimating this angular velocity and position from the current measurements. The rotating rotor will affect the currents in the motor’s stator depending on the rotor’s angular velocity, and the observer estimates the angular velocity and angular position from this effect. There are several methods proposed in the article database IEEE Xplore to observe this angular velocity and angular position. The methods of observation chosen for study in this thesis are the extended Kalman filter and a phase locked loop algorithm based on the back electro motive force augmented by an injection method at low velocities. The extended Kalman filter was also programmed to be run on a digital signal processor in SAAB Avitronics’ developing hardware. The extended Kalman filter performs well in simulations and shows promise in hardware implementation. The algorithm for hardware implementation suffers from poor resolution in calculations involving the covariance matrices of the Kalman filter due to the use of 16-bit integers, yielding an observer that only functions in certain conditions. As simulations with 32-bit integer algorithm performs well it is likely that a 32- bit implementation of the extended Kalman filter would perform well on a motor, making sensorless control possible in a wide range of operations.
|
63 |
Road Slope EstimationLarsson, Martin January 2010 (has links)
Knowledge about the current road slope can improve several applications in a heavy-duty vehicle such as predictive cruise control and automated gearbox control. In this thesis the possibility of estimating the road slope based on signals from a vehicles air suspension system has been studied. More specifically, the measurement consists of a pressure signal measuring the axle load, and a vertical distance sensor. A variety of suspension systems can be mounted on a Scania truck. During this thesis, two discrete-time models based on two different rear axle air suspension systems have been proposed. The models use the effect of alternating axle load during a change in the road slope and the estimates are computed using an extended Kalman filter. The first model is based on a rear axle suspension known as the 2-bellow system. This type of suspension is strongly affected by the driveshaft torque, which results in a behaviour where the rear end is pushed upwards and thus decreasing the rear axle load during uphill driving. A model was developed in order to compensate for this behaviour. Unfortunately, the estimates showed less promising results and all attempts to determine the error was unsuccessful. The latter model is based on the 4-bellow system. This suspension system is not affected by the driveshaft torque and a less complex model could be derived. The experimental results indicated that road slope estimation was possible and with a fairly accurate result. However, more work is needed since the estimate is affected by road surface irregularities and since the algorithm requires knowledge about the vehicles mass and the location of the centre of gravity. All the presented results have been estimated based on real data from a test track at Scania Technical Centre in Södertälje.
|
64 |
Path Prediction for a Night Vision SystemFri, Johannes January 2011 (has links)
In modern cars, advanced driver assistance systems are used to aid the driver and increase the automobile safety. An example of such a system is the night vision system designed to detect and warn for pedestrians in danger of being hit by the car. To determine if a warning should be given when a pedestrian is detected, the system requires a prediction of the future path of the car for up to four seconds ahead in time. In this master's thesis, a new path prediction algorithm based on satellite positioning and a digital map database has been developed. The algorithm uses an extended Kalman filter to get an accurate estimate of the current position and heading direction of the car. The estimate is then matched to a position in the map database and the possible future paths of the vehicle are predicted using the road network. The performance of the path prediction algorithm has been evaluated on recorded night vision sequences corresponding to 15 hours of driving. The results show that map-based path prediction algorithms are superior to dead-reckoning methods for longer time horizons. It has also been investigated whether vision-based lane detection and tracking can be used to improve the path prediction. A prediction method using lane markings has been implemented and evaluated on recorded sequences. Based on the results, the conclusion is that lane detection can be used to support a path prediction system when lane markings are clearly visible.
|
65 |
State estimation of RC cars for the purpose of drift control / Tillståndsskattning på RC-bilar för driftregleringLiljestrand, Jonatan January 2011 (has links)
High precision state estimation is crucial when executing drift control and high speed control close to the stability limit, on electric RC scale cars. In this thesis the estimation is made possible through recursive Bayesian filtering; more precisely the Extended Kalman Filter. By modelling the dynamics of the car and using it together with position measurements and control input signals, it is possible to do state estimation and prediction with high accuracy even on non-measured states. Focus is on real-time, on-line, estimation of the so called slip angles of the front and rear tyres, because of their impact of the car’s behaviour. With the extended information given to the system controller, higher levels of controllability could be reached. This can be used not only for higher speeds and drift control, but also a possibility to study future anti-skid safety measures forground vehicles.
|
66 |
Simultaneous Localization And Mapping Using a Kinect in a Sparse Feature Indoor Environment / Simultan lokalisering och kartering med hjälp av en Kinect i en inomhusmiljö med få landmärkenHjelmare, Fredrik, Rangsjö, Jonas January 2012 (has links)
Localization and mapping are two of the most central tasks when it comes toautonomous robots. It has often been performed using expensive, accurate sensorsbut the fast development of consumer electronics has made similar sensorsavailable at a more affordable price. In this master thesis a TurtleBot\texttrademark\, robot and a MicrosoftKinect\texttrademark\, camera are used to perform Simultaneous Localization AndMapping, SLAM. The thesis presents modifications to an already existing opensource SLAM algorithm. The original algorithm, based on visual odometry, isextended so that it can also make use of measurements from wheel odometry and asingle axis gyro. Measurements are fused using an Extended Kalman Filter,EKF, operating in a multirate fashion. Both the SLAM algorithm and the EKF areimplemented in C++ using the framework Robot Operating System, ROS. The implementation is evaluated on two different data sets. One set isrecorded in an ordinary office room which constitutes an environment with manylandmarks. The other set is recorded in a conference room where one of the wallsis flat and white. This gives a partially sparse featured environment. The result by providing additional sensor information is a more robust algorithm.Periods without credible visual information does not make the algorithm lose itstrack and the algorithm can thus be used in a larger variety of environmentsincluding such where the possibility to extract landmarks is low. The resultalso shows that the visual odometry can cancel out drift introduced bywheel odometry and gyro sensors.
|
67 |
Sensor fusion between a Synthetic Attitude and Heading Reference System and GPS / Sensorfusion mellan ett Syntetiskt attityd- och kursreferenssystem och GPSRosander, Regina January 2003 (has links)
Sensor fusion deals with the merging of several signals into one, extracting a better and more reliable result. Traditionally the Kalmanfilter is used for this purpose and the aircraft navigation has benefited tremendously from its use. This thesis considers the merge of two navigation systems, the GPS positioning system and the Saab developed Synthetic Attitude and Heading Reference System (SAHRS). The purpose is to find a model for such a fusion and to investigate whether the fusion will improve the overall navigation performance. The non-linear nature of the navigation equations will lead to the use of the extended Kalman filter and the model is evaluated against both simulated and real data. The results show that this strategy indeed works but problems will arise when the GPS signal falls away.
|
68 |
Performance comparison of the Extended Kalman Filter and the Recursive Prediction Error Method / Jämförelse mellan Extended Kalmanfiltret och den Rekursiva PrediktionsfelsmetodenWiklander, Jonas January 2003 (has links)
In several projects within ABB there is a need of state and parameter estimation for nonlinear dynamic systems. One example is a project investigating optimisation of gas turbine operation. In a gas turbine there are several parameters and states which are not measured, but are crucial for the performance. Such parameters are polytropic efficiencies in compressor and turbine stages, cooling mass flows, friction coefficients and temperatures. Different methods are being tested to solve this problem of system identification or parameter estimation. This thesis describes the implementation of such a method and compares it with previously implemented identification methods. The comparison is carried out in the context of parameter estimation in gas turbine models, a dynamic load model used in power systems as well as models of other dynamic systems. Both simulated and real plant measurements are used in the study.
|
69 |
Vehicle Positioning with Map Matching Using Integration of a Dead Reckoning System and GPS / Integration av dödräkning och GPS för fordonspositionering med map matchingAndersson, David, Fjellström, Johan January 2004 (has links)
To make driving easier and safer, modern vehicles are equipped with driver support systems. Some of these systems, for example navigation or curvature warning systems, need the global position of the vehicle. To determine this position, the Global Positioning System (GPS) or a Dead Reckoning (DR) system can be used. However, these systems have often certain drawbacks. For example, DR systems suffer from error growth with time and GPS signal masking can occur. By integrating the DR position and the GPS position, the complementary characteristics of these two systems can be used advantageously. In this thesis, low cost in-vehicle sensors (gyroscope and speedometer) are used to perform DR and the GPS receiver used has a low update frequency. The two systems are integrated with an extended Kalman filter in order to estimate a position. The evaluation of the implemented positioning algorithmshows that the system is able to give an estimated position in the horizontal plane with a relatively high update frequency and with the accuracy of the GPS receiver used. Furthermore, it is shown that the system can handle GPS signal masking for a period of time. In order to increase the performance of a positioning system, map matching can be added. The idea with map matching is to compare the estimated trajectory of a vehicle with roads stored in a map data base, and the best match is chosen as the position of the vehicle. In this thesis, a simple off-line map matching algorithm is implemented and added to the positioning system. The evaluation shows that the algorithm is able to distinguish roads with different direction of travel from each other and handle off-road driving.
|
70 |
Robust Automotive Positioning: Integration of GPS and Relative Motion Sensors / Robust fordonspositionering: Integration av GPS och sensorer för relativ rörelseKronander, Jon January 2004 (has links)
Automotive positioning systems relying exclusively on the input from a GPS receiver, which is a line of sight sensor, tend to be sensitive to situations with limited sky visibility. Such situations include: urban environments with tall buildings; inside parking structures; underneath trees; in tunnels and under bridges. In these situations, the system has to rely on integration of relative motion sensors to estimate vehicle position. However, these sensor measurements are generally affected by errors such as offsets and scale factors, that will cause the resulting position accuracy to deteriorate rapidly once GPS input is lost. The approach in this thesis is to use a GPS receiver in combination with low cost sensor equipment to produce a robust positioning module. The module should be capable of handling situations where GPS input is corrupted or unavailable. The working principle is to calibrate the relative motion sensors when GPS is available to improve the accuracy during GPS intermission. To fuse the GPS information with the sensor outputs, different models have been proposed and evaluated on real data sets. These models tend to be nonlinear, and have therefore been processed in an Extended Kalman Filter structure. Experiments show that the proposed solutions can compensate for most of the errors associated with the relative motion sensors, and that the resulting positioning accuracy is improved accordingly.
|
Page generated in 0.0728 seconds