• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the effect of a weak lower crust on Basin and Range extensional history

Christopher Calvelage (10897515) 22 July 2021 (has links)
The deformation mechanisms responsible for the extension and rifting in Basin and Range extension over the past ~36 Ma, and their relative importance remain debated. Slab rollback, lithospheric body forces, and relative plate motions have all been shown to contribute, but the relative importance of each mechanism is not fully understood. Here, we build three-dimensional (3D) steady state geodynamic models to simulate the full tectonic reconstruction of Basin and Range extension and compare these results with known geologic field observations and other detailed reconstructions of surface deformation. Our modeling approximates lithospheric deformation through Stokes flow in a spherical cap of variable viscosities. By applying reconstructed boundary conditions, crustal thickness, and surface elevation at 17 Ma, and varying lithospheric viscosity we map out the predicted response of the surface motions and lower crustal flow for different assumed lithospheric viscosity contrasts and investigate the origin of core complex formation. Comparisons between predicted model deformation and geologic field observations from metamorphic core complexes and exposed fluorite deposits indicate: (1) The primary driving force of the formation of geologic features in the western US is regional gravitational collapse focused in the lower crust. Plate motions are second order by comparison at this time period and act to rotate velocities near the plate boundary. (2) A weak lower crust facilitates metamorphic core complex formation and extension in the Nevadaplano. Lateral extrusion of the lower crust serves as a mechanism for both core complex formation and the flattening of the Moho that is observed at present day. (3) Lower crustal flow is a contributes to the rotation and tilt of the Colorado Plateau and formation of the Rio Grande Rift.
2

Structural and thermal evolution of the Gulf Extensional Province in Baja California, Mexico: implications for Neogene rifting and opening of the Gulf of California

Seiler, C. January 2009 (has links)
The Gulf of California in western Mexico is a prime example of a young passive margin that is currently undergoing the transition from continental rifting to seafloor spreading. With less than ~25 km of the width of the original continental surface area submerged, the northern Gulf Extensional Province represents a key area to assess the history of strain localisation during the early stages of continental extension. Geological mapping revealed that the basins and ranges of the Sierra San Felipe, located in the hanging wall of the Main Gulf Escarpment, are bounded to the east by an en-echelon array of left-stepping moderate- to low-angle normal faults that represent the next dominant set of normal faults from the break-away fault in direction of transport. Structural displacement estimates suggest up to ~4.5–9 km of broadly east-directed extension on the Las Cuevitas, Santa Rosa and Huatamote detachments. Fault kinematics suggest a transtensional stress regime with NE- to SE-directed extension and permutating vertical and N–S subhorizontal shortening. Clockwise vertical-axis block rotations and constrictional folding of the detachments were an integral part of the late Miocene to Pleistocene deformation history of the San Felipe fault array. This overall constrictional strain regime is indistinguishable from the present-day deformation in the Gulf Extensional Province and indicates that the fault array formed during a single phase of integrated transtensional shearing since rifting began in the late Miocene. / Apatite fission track (AFT) and (U-Th)/He results of Cretaceous crystalline basement samples from the Sierra San Felipe record a three-stage Cenozoic cooling history. Moderate cooling (~4–7ºC/m.y.) during late Paleocene to Eocene times is attributed to progressive down-wearing and bevelling of the ancestral Peninsular Ranges. Beginning at ~45–35 Ma, a period of tectonic quiescence with cooling rates of ≤1ºC/m.y. marks final unroofing of the basement and the development of a regional Oligocene to Miocene peneplain. Thermal modelling of samples from the footwall of the Las Cuevitas and Santa Rosa fault systems indicates that accelerated cooling began at ~9–8 Ma. This cooling pulse is attributed to tectonic denudation of the footwall and implies that faulting initiated synchronously on both detachments at ~9–8 Ma. Late Miocene deformation occurred distributed throughout the Sierra San Felipe, but started waning after the Pacific-North America plate boundary had localised into the Gulf of California by ~4.7 Ma / During a late Pliocene structural reorganisation in the northern Gulf, the locus of extension shifted from the Tiburón to the Delfín basins, thereby initiating strike-slip faulting on the Ballenas fracture zone, a transform fault located approximately 1.5–4.5 km offshore in central Baja California. This is consistent with low-temperature thermochronometric data from two horizontal transects perpendicular to the strike of the transform, which document a pronounced late Pliocene to Pleistocene heating event that is related to the structural and/or magmatic evolution of the transform fault. During reheating, maximum paleotemperatures reached >100–120ºC near the coast, but did not exceed ~60ºC some 5–8 km further inland. Highly non-systematic overprinting patterns are best explained by circulating hydrothermal fluids, which are most likely associated with magmatic leaking along the transform fault. / AFT and (U-Th)/He ages from a vertical profile collected on the Libertad escarpment, which forms part of the Main Gulf Escarpment in central Baja, pre-date Neogene extension and indicate that rift-related denudation was insufficient to expose samples from temperatures higher than the sensitivity zones of the two systems. One sample from the base of the escarpment however, records a middle to late Miocene hydrothermal overprint and suggests that extension in central Baja California likely initiated before ~10–8 Ma.
3

The geologic history of central and eastern Ledi-Geraru, Afar, Ethiopia

January 2013 (has links)
abstract: Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar. / Dissertation/Thesis / Ph.D. Geological Sciences 2013
4

Supradetachment Basin Tectonics and The Exhumation History of The Menderes Core Complex, Western Anatolia - Turkey

ONER, ZEYNEP 04 May 2012 (has links)
No description available.
5

Extensional collapses in the overpressured frictional upper crust based on limit analysis / Approche par analyse limite des mécanismes de ruine en extension dans la croute supérieure frictionnelle en présence de surpressions de fluides

Yuan, Xiaoping 04 July 2016 (has links)
Dans ce manuscrit nous développons l'approche cinématique 2D du calcul à la rupture pour examinerles effondrements en extension (ou failles normales) de la croûte supérieure cassante qui résultent desurpressions de fluides. Les sujets d'intérêt liés à la déformation en extension sont (1) les roles de lapression des fluides, des processus de surface, et des propriétés des matériaux et des failles sur lastabilité des structures d'extension; (2) la formation de failles normales à faible pendage et de failleslistriques; (3) la distribution de la déformation au dessus d'un glissement à faible pendage; et (4)l'influence de l'adoucissement mécanique des failles et des processus de sédimentation sur cettedistribution.Cette approche mécanique est vérifiée par la théorie du prisme critique de Coulomb, et la généralise pour étudier la topographie complexe de la péninsule de Mejillones dans le Nord du Chili. Cetteapproche est aussi appliquée à l'instabilité gravitaire dans le delta du Niger en reliant les structurescompressives en bas de pente aux structure extensives en amont par un détachement profond. Nousprédisons des surpressions de fluides beaucoup plus élevée que celles obtenues par application duprisme de Coulomb. Enfin, cette méthodologie est appliquée à l'étude de la forme de failles normalesreliant un détachement profond à la surface. Dans le cas du delta du Niger, nous montrons que lesfailles à faible pendage et les failles listriques impliquent que la profondeur de rétention des fluides estfaible. La version séquentielle de l'analyse limite ouvre de nouvelles voies pour suivre l'évolutionstructurale dans le temps du jeu sur les failles normales. Les simulations montrent en particulier qu'unefaille normale tourne vers des pendage plus faibles au fur et à mesure de la dénudation du mur, formantune région qui passe du mur au toit de la faille active en rotation. La prédiction de cette région estillustrée par des expériences analogiques et des exemples de terrain. / This manuscript develops a 2D kinematic approach of Limit Analysis to examine the extensionalfailures in the brittle, upper crust resulting from fluid overpressures and normal faulting. There aremany interesting topics related to the extensional deformation such as (1) the roles of fluid pressure,topographic process, material and fault properties on the stability of extensional structures; (2) theformation of low-angle and listric normal fault; (3) the deformation pattern due to slip on a low-anglefault; and (4) the influence of fault softening and sedimentation processes on this deformation pattern.This mechanical approach applied to wedge prototypes is validated by the critical Coulomb wedge(CCW) theory, and it generalizes the CCW theory to investigate the complex topography on theMejillones peninsula, Northern Chile. Additionally, this approach is also applied to investigate gravityinstability of Niger Delta by linking down-slope compressional to up-slope extensional failures througha deep detachment. We predict much higher fluid overpressures than that of the CCW theory. Finally,this Limit Analysis methodology is applied to investigate the shape of normal fault linking a lowdetachment to the surface. The application to Niger Delta implies that the formation of very low-angleand strongly listric faults results from a shallow fluid-retention depth. The sequential version of LimitAnalysis opens new ways to envision the structural evolution through time resulting from normalfaulting. The simulations show that the normal fault rotates during extension, forming a region of Footto-Hanging Wall (FHW) where the material in the footwall is sheared upon entering the hanging wall.The creation of the FHW region is illustrated by sandbox experiments and field examples.

Page generated in 0.0973 seconds