• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Isolated Pancreatic Extramedullary Hematopoiesis

Crider, Steven, Kroszer-Hamati, Agnes, Krishnan, Koyamangalath 06 February 1998 (has links)
A 59-year-old man with lung cancer, peripheral blood leukocytosis and thrombocytosis without peripheral lymphadenopathy and hepatosplenomegaly was found to have pancreatic extramedullary hematopoiesis (EMH) in association with an 'atypical' myeloproliferative disorder. Studies for the Philadelphia chromosome and bcr-abl fusion product were negative. This is the first documented case in the literature of isolated EMH in the pancreas.
2

Inositol Phospholipid and Tyrosine Phosphorylation Signaling in the Biology of Hematopoietic Stem Cells

Hazen, Amy L 19 February 2009 (has links)
Blood cells are continuously produced throughout our lifetime by a rare pluripotent cell that primarily resides in the adult bone marrow. This hematopoietic stem cell (HSC) must maintain a careful balance between self-renewal, differentiation and apoptosis in order to support hematopoiesis for such a long duration. Understanding the mechanism of balance between these fates is crucial to our understanding and clinical application of these cells. From previous studies, we know Src homology 2 domain containing 5' inositol phosphatase 1 (SHIP) plays an important role in HSC homeostasis and function. Most interestingly SHIP impacts HSC homing to the bone marrow niche. An ideal location and environment is essential for HSC to fulfill their physiological roles. Here we present evidence that SHIP is expressed by cells of the HSC niche. Furthermore, SHIP deficiency severely alters this environment and thus damages HSC function. In addition to the extrinsic effects of a SHIP-deficient microenvironment on HSC, there is an intrinsic requirement for SHIP expression in confining HSC to the bone marrow niche. We previously demonstrated that lack of SHIP leads to an increase in peripheral HSC. Here we demonstrate that SHIP-deficient HSC from the spleen can provide radioprotection and sustained multi-lineage repopulation in lethally irradiated hosts. This indicates extramedullary HSC can function outside the traditional bone marrow niche in SHIP-deficient mice. Combined, these studies indicate both extrinsic and intrinsic factors contribute to HSC homeostasis and function. In order to better understand the signaling pathways involved in self-renewal and differentiation, we applied an array-based technology to hematopoietic cells at various levels of differentiation. Comparing the phosphorylation signature, or 'kinome', of these cell types can help pinpoint signaling mechanisms important for HSC self-renewal and lineage commitment.
3

Beta thalassemia: pathogenesis, progression, and treatment

Kitiashvili, Michael 10 March 2023 (has links)
β-thalassemia is an autosomal recessive blood disease caused by mutations in β-globin genes that either reduce or altogether abolish β-globin chain synthesis. Normally, two β-globin chains would combine with two α-globin chains and a heme group to form hemoglobin. Because α-globin chain synthesis is unaffected in β-thalassemia patients, the unpaired α-globin chains accumulate and precipitate. The reduced formation of hemoglobin and accumulation of unpaired α-globin chains are the two fundamental molecular pathologies. In the most serious cases of the disease, the resulting complications develop before two years of age. Most often, these include severe anemia, pallor, jaundice, abdominal enlargement, and distinct craniofacial features. If left untreated, the disease is fatal before the age of three in the most serious cases. Each year, more than 40,000 births, mostly in Southeast Asia, Middle East, or Africa, are affected with β-thalassemia. With increased migration, however, β-thalassemia is becoming more common in Europe and North America. Currently, the most widespread treatment for the disease is transfusions and iron chelation therapy, and the only cure is hematopoietic stem cell transplantation. In recent years, however, multiple treatments and potential cures such as fetal hemoglobin inducers and gene therapy have shown promise. By analyzing the cost-efficiency, viability, and therapeutic benefits of current and future treatments, it can be seen that a combination of fetal hemoglobin inducers, transfusions, and iron chelation therapy will have the greatest impact for the vast majority of β-thalassemia patients.

Page generated in 0.0732 seconds