• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimisation L¹ en mécanique spatiale / L¹-Minimization for Space Mechanics

Chen, Zheng 14 September 2016 (has links)
En astronautique, une question importante est de contrôler le mouvement d’un satellite soumis à la gravitation des corps célestes de telle sorte que certains indices de performance soient minimisés (ou maximisés). Dans cette thèse, nous nous intéressons à la minimisation de la norme L¹ du contrôle pour le problème circulaire restreint des trois corps. Les conditions nécessaires à l’optimalité sont obtenues en utilisant le principe du maximum de Pontryagin, révélant l’existence de contrôles bang-bang et singuliers. En s’appuyant sur les résultats de Marchal [1] et Zelikin et al. [2], la présence du phénomène de Fuller est mise en évidence par l’analyse des es extrêmales singulières. La contrôlabilité pour le problème à deux corps (un cas dégénéré du problème circulaire restreint des trois corps) avec un contrôle prenant des valeurs dans une boule euclidienne est caractérisée dans le chapitre 2. Le résultat de contrôlabilité est facilement étendu au problème des trois corps puisque le champ de vecteurs correspondant à la dérive est récurrent. En conséquence, si les trajectoires contrôlées admissibles restent dans un compact fixé, l’existence des solutions du problème de minimisation L¹ peut être obtenu par une combinaison du théorème de Filippov (voir [4, chapitre 10]) et une procédure appropriée de convexification (voir [5]). En dimension finie, le problème de minimisation L¹ est bien connu pour générer des solutions où le contrôle s’annule sur certains intervalles de temps. Bien que le principe du maximum de Pontryagin soit un outil puissant pour identifier les solutions candidates pour le problème de minimisation L¹, il ne peut pas garantir que ces candidats sont au moins localement optimaux sauf si certaines conditions d’optimalité suffisantes sont satisfaites. En effet, il est une condition préalable pour établir (et pour être capable de vérifier) les conditions d’optimalité nécessaires et suffisantes pour résoudre le problème de minimisation L¹. Dans cette thèse, l’idée cruciale pour obtenir de telles conditions est de construire une famille paramétrée d’extrémales telle que l’extrémale de référence peut être intégrée dans un champ d’extrémales. Deux conditions de non-pliage pour la projection canonique de la famille paramétrée d’extrémales sont proposées. En ce qui concerne le cas de points terminaux fixés, ces conditions de non-pliage sont suffisantes pour garantir que l’extrémale de référence est localement minimisante tant que chaque point de commutation est régulier (cf. chapitre 3). Si le point terminal n’est pas fixe mais varie sur une sous-variété lisse, une condition suffisante supplémentaire impliquant la géométrie de variété de cible est établie (cf. chapitre 4). Bien que diverses méthodes numériques, y compris celles considérées comme directes [6, 7], indirectes [5, 8], et hybrides [11], dans la littérature sont en mesure de calculer des solutions optimales, nous ne pouvons pas attendre d’un satellite piloté par le contrôle optimal précalculé (ou le contrôle nominal) de se déplacer sur la trajectoire optimale précalculée (ou trajectoire nominale) en raison de perturbations et des erreurs inévitables. Afin d’éviter de recalculer une nouvelle trajectoire optimale une fois que la déviation de la trajectoire nominale s’est produite, le contrôle de rétroaction optimale voisin, qui est probablement l’application pratique la plus importante de la théorie du contrôle optimal [12, Chapitre 5], est obtenu en paramétrant les extrémales voisines autour de la nominale (cf. chapitre 5). Étant donné que la fonction de contrôle optimal est bang-bang, le contrôle optimal voisin comprend non seulement la rétroaction sur la direction de poussée, mais aussi celle sur les instants de commutation. En outre, une analyse géométrique montre qu’il est impossible de construire un contrôle optimal voisin une fois que le point conjugué apparaisse ou bien entre ou bien à des instants de commutation. / In astronautics, an important issue is to control the motion of a satellite subject to the gravitation of celestial bodies in such a way that certain performance indices are minimized (or maximized). In the thesis, we are interested in minimizing the L¹-norm of control for the circular restricted three-body problem. The necessary conditions for optimality are derived by using the Pontryagin maximum principle, revealing the existence of bang-bang and singular controls. Singular extremals are analyzed, and the Fuller phenomenon shows up according to the theories developed by Marchal [1] and Zelikin et al. [2, 3]. The controllability for the controlled two-body problem (a degenerate case of the circular restricted three-body problem) with control taking values in a Euclidean ball is addressed first (cf. Chapter 2). The controllability result is readily extended to the three-body problem since the drift vector field of the three-body problem is recurrent. As a result, if the admissible controlled trajectories remain in a fixed compact set, the existence of the solutions of the L¹-minimizaion problem can be obtained by a combination of Filippov theorem (see [4, Chapter 10], e.g.) and a suitable convexification procedure (see, e.g., [5]). In finite dimensions, the L¹-minimization problem is well-known to generate solutions where the control vanishes on some time intervals. While the Pontryagin maximum principle is a powerful tool to identify candidate solutions for L1-minimization problem, it cannot guarantee that the these candidates are at least locally optimal unless sufficient optimality conditions are satisfied. Indeed, it is a prerequisite to establish (as well as to be able to verify) the necessary and sufficient optimality conditions in order to solve the L¹-minimization problem. In this thesis, the crucial idea for establishing such conditions is to construct a parameterized family of extremals such that the reference extremal can be embedded into a field of extremals. Two no-fold conditions for the canonical projection of the parameterized family of extremals are devised. For the scenario of fixed endpoints, these no-fold conditions are sufficient to guarantee that the reference extremal is locally minimizing provided that each switching point is regular (cf. Chapter 3). If the terminal point is not fixed but varies on a smooth submanifold, an extra sufficient condition involving the geometry of the target manifold is established (cf. Chapter 4). Although various numerical methods, including the ones categorized as direct [6, 7], in- direct [5, 8, 9], and hybrid [10], in the literature are able to compute optimal solutions, one cannot expect a satellite steered by the precomputed optimal control (or nominal control) to move on the precomputed optimal trajectory (or nominal trajectory) due to unavoidable perturbations and errors. In order to avoid recomputing a new optimal trajectory once a deviation from the nominal trajectory occurs, the neighboring optimal feedback control, which is probably the most important practical application of optimal control theory [11, Chapter 5], is derived by parameterizing the neighboring extremals around the nominal one (cf. Chapter 5). Since the optimal control function is bang-bang, the neighboring optimal control consists of not only the feedback on thrust direction but also that on switching times. Moreover, a geometric analysis shows that it is impossible to construct the neighboring optimal control once a conjugate point occurs either between or at switching times.
2

A geometric study of abnormality in optimal control problems for control and mechanical control systems

Barbero Liñán, María 19 December 2008 (has links)
Durant els darrers quaranta anys la geometria diferencial ha estat una eina fonamental per entendre la teoria de control òptim. Habitualment la millor estratègia per resoldre un problema és transformar-lo en un altre problema que sigui més tractable. El Principi del Màxim de Pontryagin proporciona al problema de control òptim d’una estructura Hamiltoniana. Les solucions del problema Hamiltonià que satisfan unes determinades propietats són candidates a ésser solucions del problema de control òptim. Aquestes corbes candidates reben el nom d’extremals. Per tant, el Principi del Màxim de Pontryagin aixeca el problema original a l’espai cotangent. En aquesta tesi desenvolupem una demostració completa i geomètrica del Principi del Màxim de Pontryagin. Investiguem cuidadosament els punts més delicats de la demostració, que per exemple inclouen les perturbacions del controls, l’aproximació lineal del conjunt de punts accessibles i la condició de separació. Entre totes les solucions d’un problema de control òptim, existeixen les corbes anormals. Aquestes corbes no depenen de la funció de cost que es vol minimitzar, sinó que només depenen de la geometria del sistema de control. En la literatura de control òptim, existeixen estudis sobre l’anormalitat, tot i que només per a sistemes lineals o afins en el controls i sobretot amb funcions de cost quadràtiques en els controls. Nosaltres descrivim un mètode geomètric nou per caracteritzar tots els diferents tipus d’extremals (no només les anormals) de problemes de control òptim genèrics. Aquest mètode s’obté com una adaptació d’un algoritme de lligadures presimplèctic. El nostre interès en les corbes anormals es degut a les corbes òptimes estrictament anormals, les quals també queden caracteritzades mitjançant l’algoritme descrit en aquesta tesi. Com aplicació del mètode mencionat, caracteritzem les extremals d’un problema de control òptim lliure, aquell on el domini de definició no està donat. En concret, els problemes de temps mínim són problemes de control òptim lliures. A més a més, som capaços de donar una corba extremal estrictament anormal aplicant el mètode descrit per a un sistema mecànic. Un cop la noció d’anormalitat ha estat estudiada en general, ens concentrem en l’estudi de l’anormalitat per a sistemes de control mecànics, perquè no existeixen resultats sobre l’existència de corbes òptimes estrictament anormals per a problemes de control òptim associats a aquests sistemes. En aquesta tesi es donen resultats sobre les extremals anormals quan la funció de cost és quadràtica en els controls o si el funcional a minimitzar és el temps. A més a més, la caracterització d’anormals en casos particulars és descrita mitjançant elements geomètrics com les formes quadràtiques vector valorades. Aquests elements geomètrics apareixen com a resultat d’aplicar el mètode descrit en aquesta tesi. També tractem un altre enfocament de l’estudi de l’anormalitat de sistemes de control mecànics, que consisteix a aprofitar l’equivalència que existeix entre els sistemes de control noholònoms i els sistemes de control cinemàtics. Provem l’equivalència entre els problemes de control òptim associats a ambdós sistemes de control i això permet establir relacions entre les corbes extremals del problema nonholònom i del cinemàtic. Aquestes relacions permeten donar un example d’una corba òptima estrictament anormal en un problema de temps mínim per a sistemes de control mecànics. Finalment, i deixant de banda per un moment l’anormalitat, donem una formulació geomètrica dels problemes de control òptim no autònoms mitjançant la formulació unificada de Skinner-Rusk. La formulació descrita en aquesta tesis és fins i tot aplicable a sistemes de control implícits que apareixen en un gran nombre de problemes de control òptim dins de l’àmbit de l’enginyeria, com per exemple els sistemes Lagrangians controlats i els sistemes descriptors. / Durante los últimos cuarenta años la geometría diferencial ha sido una herramienta para entender la teoría de control óptimo. Habitualmente la mejor estrategia para resolver un problema es transformarlo en otro problema que sea más tratable. El Principio del Máximo de Pontryagin dota al problema de control óptimo de una estructura Hamiltoniana. Las soluciones del problema Hamiltoniano que satisfagan determinadas propiedades son candidatas a ser soluciones del problema de control óptimo. Estas curvas candidatas se llaman extremales. Por lo tanto, el Principio del Máximo de Pontryagin levanta el problema original al espacio cotangente. En esta tesis doctoral, desarrollamos una demostración completa y geométrica del Principio del Máximo de Pontryagin. Investigamos minuciosamente los puntos delicados de la demostración, como son las perturbaciones de los controles, la aproximación lineal del conjunto de puntos alcanzables y la condición de separación. Entre todas las soluciones de un problema de control óptimo, existen las curvas anormales. Estas curvas no dependen de la función de coste que se quiere minimizar, sino que sólo dependen de la geometría del sistema de control. En la literatura de control óptimo existen estudios sobre la anormalidad, aunque sólo para sistemas lineales o afines en los controles y fundamentalmente con funciones de costes cuadráticas en los controles. Nosotros presentamos un método geométrico nuevo para caracterizar todos los distintos tipos de extremales (no sólo las anormales) de problemas de control óptimo genéricos. Este método es resultado de adaptar un algoritmo de ligaduras presimpléctico. Nuestro interés en las extremales anormales es debido a las curvas óptimas estrictamente anormales, las cuales también pueden ser caracterizadas mediante el algoritmo descrito en esta tesis. Como aplicación del método mencionado en el párrafo anterior, caracterizamos las extremales de un problema de control óptimo libre, aquél donde el dominio de definición de las curvas no está dado. En particular, los problemas de tiempo óptimo son problemas de control óptimo libre. Además, somos capaces de dar un ejemplo de una curva extremal estrictamente anormal aplicando el método descrito. Una vez la noción de anormalidad en general ha sido estudiada, nos centramos en el estudio de la anormalidad para sistemas de control mecánicos, ya que no existen resultados sobre la existencia de curvas óptimales estrictamente anormales para problemas de control óptimo asociados a estos sistemas. En esta tesis, se dan resultados sobre las extremales anormales cuando la función de coste es cuadrática en los controles o el funcional a minimizar es el tiempo. Además, la caracterización de las anormales en casos particulares es descrita por medio de elementos geométricos como las formas cuadráticas vector valoradas. Dichos elementos geométricos aparecen como consecuencia del método descrito para caracterizar las extremales. También se considera otro enfoque para el estudio de la anormalidad de sistemas de control mecánicos, que consiste en aprovechar la equivalencia que existe entre sistemas de control noholónomos y sistemas de control cinemáticos. Se prueba la equivalencia entre problemas de control óptimo asociados a ambos sistemas de control, lo que permite establecer relaciones entre las extremales del problema noholónomo y las extremales del problema cinemático. Estas relaciones permiten dar un ejemplo de una curva optimal estrictamente anormal en un problema de tiempo óptimo para sistemas de control mecánicos. Por último, olvidándonos por un momento de la anormalidad, se describe una formulación geométrica de los problemas de control óptimo no autónomos aprovechando la formulación unificada de Skinner-Rusk. Esta formulación es incluso válida para sistemas de control implícitos que aparecen en numerosos problemas de control óptimo de ámbito ingenieril, como por ejemplo, los sistemas Lagrangianos controlados y los sistemas descriptores. / For the last forty years, differential geometry has provided a means of understanding optimal control theory. Usually the best strategy to solve a difficult problem is to transform it into a different problem that can be dealt with more easily. Pontryagin's Maximum Principle provides the optimal control problem with a Hamiltonian structure. The solutions to the Hamiltonian problem, satisfying particular conditions, are candidates to be solutions to the optimal control problem. These candidates are called extremals. Thus, Pontryagin's Maximum Principle lifts the original problem to the cotangent bundle. In this thesis, we develop a complete geometric proof of Pontryagin's Maximum Principle. We investigate carefully the crucial points in the proof such as the perturbations of the controls, the linear approximation of the reachable set and the separation condition. Among all the solutions to an optimal control problem, there exist the abnormal curves. These do not depend on the cost function we want to minimize, but only on the geometry of the control system. Some work has been done in the study of abnormality, although only for control-linear and control-affine systems with mainly control-quadratic cost functions. Here we present a novel geometric method to characterize all the different kinds of extremals (not only the abnormal ones) in general optimal control problems. This method is an adaptation of the presymplectic constraint algorithm. Our interest in the abnormal curves is with the strict abnormal minimizers. These last minimizers can be characterized by the geometric algorithm presented in this thesis. As an application of the above-mentioned method, we characterize the extremals for the free optimal control problems that include, in particular, the time-optimal control problem. Moreover, an example of an strict abnormal extremal for a control-affine system is found using the geometric method. Furthermore, we focus on the description of abnormality for optimal control problems for mechanical control systems, because no results about the existence of strict abnormal minimizers are known for these problems. Results about the abnormal extremals are given when the cost function is control-quadratic or the time must be minimized. In this dissertation, the abnormality is characterized in particular cases through geometric constructions such as vectorvalued quadratic forms that appear as a result of applying the previous geometric procedure. The optimal control problems for mechanical control systems are also tackled taking advantage of the equivalence between nonholonomic control systems and kinematic control systems. In this thesis, it is found an equivalence between time-optimal control problems for both control systems. The results allow us to give an example of a local strict abnormal minimizer in a time-optimal control problem for a mechanical control system. Finally, setting aside the abnormality, the non-autonomous optimal control problem is described geometrically using the Skinner-Rusk unified formalism. This approach is valid for implicit control systems that arise in optimal control problems for the controlled Lagrangian systems and for descriptor systems. Both systems are common in engineering problems.

Page generated in 0.0427 seconds