• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 2
  • 1
  • Tagged with
  • 12
  • 12
  • 8
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nouvelles approches pour l'estimation du canal ultra-large bande basées sur des techniques d'acquisition compressée appliquées aux signaux à taux d'innovation fini IR-UWB / New approaches for UWB channel estimation relying on the compressed sampling of IR-UWB signals with finite rate of innovation

Yaacoub, Tina 20 October 2017 (has links)
La radio impulsionnelle UWB (IR-UWB) est une technologie de communication relativement récente, qui apporte une solution intéressante au problème de l’encombrement du spectre RF, et qui répond aux exigences de haut débit et localisation précise d’un nombre croissant d’applications, telles que les communications indoor, les réseaux de capteurs personnels et corporels, l’IoT, etc. Ses caractéristiques uniques sont obtenues par la transmission d’impulsions de très courte durée (inférieure à 1 ns), occupant une largeur de bande allant jusqu’à 7,5 GHz, et ayant une densité spectrale de puissance extrêmement faible (inférieure à -43 dBm/MHz). Les meilleures performances d’un système IR-UWB sont obtenues avec des récepteurs cohérents de type Rake, au prix d’une complexité accrue, due notamment à l’étape d’estimation du canal UWB, caractérisé par de nombreux trajets multiples. Cette étape de traitement nécessite l’estimation d’un ensemble de composantes spectrales du signal reçu, sans pouvoir faire appel aux techniques d’échantillonnage usuelles, en raison d’une limite de Nyquist particulièrement élevée (plusieurs GHz).Dans le cadre de cette thèse, nous proposons de nouvelles approches, à faible complexité, pour l’estimation du canal UWB, basées sur la représentation parcimonieuse du signal reçu, la théorie de l’acquisition compressée, et les méthodes de reconstruction des signaux à taux d’innovation fini. La réduction de complexité ainsi obtenue permet de diminuer de manière significative le coût d’implémentation du récepteur IR-UWB et sa consommation. D’abord, deux schémas d’échantillonnage compressé, monovoie (filtre SoS) et multivoie (MCMW) identifiés dans la littérature sont étendus au cas des signaux UWB ayant un spectre de type passe-bande, en tenant compte de leur implémentation réelle dans le circuit. Ces schémas permettent l’acquisition des coefficients spectraux du signal reçu et l’échantillonnage à des fréquences très réduites ne dépendant pas de la bande passante des signaux, mais seulement du nombre des trajets multiples du canal UWB. L’efficacité des approches proposées est démontrée au travers de deux applications : l’estimation du canal UWB pour un récepteur Rake cohérent à faible complexité, et la localisation précise en environnement intérieur dans un contexte d’aide à la dépendance.En outre, afin de réduire la complexité de l’approche multivoie en termes de nombre de voies nécessaires pour l’estimation du canal UWB, nous proposons une architecture à nombre de voies réduit, en augmentant le nombre d’impulsions pilotes émises.Cette même approche permet aussi la réduction de la fréquence d’échantillonnage associée au schéma MCMW. Un autre objectif important de la thèse est constitué par l’optimisation des performances des approches proposées. Ainsi, bien que l’acquisition des coefficients spectraux consécutifs permette une mise en oeuvre simple des schémas multivoie, nous montrons que les coefficients ainsi choisis, ne donnent pas les performances optimales des algorithmes de reconstruction. Ainsi, nous proposons une méthode basée sur la cohérence des matrices de mesure qui permet de trouver l’ensemble optimal des coefficients spectraux, ainsi qu’un ensemble sous-optimal contraint où les positions des coefficients spectraux sont structurées de façon à faciliter la conception du schéma MCMW. Enfin, les approches proposées dans le cadre de cette thèse sont validées expérimentalement à l’aide d’une plateforme expérimentale UWB du laboratoire Lab-STICC CNRS UMR 6285. / Ultra-wideband impulse radio (IR-UWB) is a relatively new communication technology that provides an interesting solution to the problem of RF spectrum scarcity and meets the high data rate and precise localization requirements of an increasing number of applications, such as indoor communications, personal and body sensor networks, IoT, etc. Its unique characteristics are obtained by transmitting pulses of very short duration (less than 1 ns), occupying a bandwidth up to 7.5 GHz, and having an extremely low power spectral density (less than -43 dBm / MHz). The best performances of an IR-UWB system are obtained with Rake coherent receivers, at the expense of increased complexity, mainly due to the estimation of UWB channel, which is characterized by a large number of multipath components. This processing step requires the estimation of a set of spectral components for the received signal, without being able to adopt usual sampling techniques, because of the extremely high Nyquist limit (several GHz).In this thesis, we propose new low-complexity approaches for the UWB channel estimation, relying on the sparse representation of the received signal, the compressed sampling theory, and the reconstruction of the signals with finite rate of innovation. The complexity reduction thus obtained makes it possible to significantly reduce the IR-UWB receiver cost and consumption. First, two existent compressed sampling schemes, single-channel (SoS) and multi-channel (MCMW), are extended to the case of UWB signals having a bandpass spectrum, by taking into account realistic implementation constraints. These schemes allow the acquisition of the spectral coefficients of the received signal at very low sampling frequencies, which are not related anymore to the signal bandwidth, but only to the number of UWB channel multipath components. The efficiency of the proposed approaches is demonstrated through two applications: UWB channel estimation for low complexity coherent Rake receivers, and precise indoor localization for personal assistance and home care.Furthermore, in order to reduce the complexity of the MCMW approach in terms of the number of channels required for UWB channel estimation, we propose a reduced number of channel architecture by increasing the number of transmitted pilot pulses. The same approach is proven to be also useful for reducing the sampling frequency associated to the MCMW scheme.Another important objective of this thesis is the performance optimization for the proposed approaches. Although the acquisition of consecutive spectral coefficients allows a simple implementation of the MCMW scheme, we demonstrate that it not results in the best performance of the reconstruction algorithms. We then propose to rely on the coherence of the measurement matrix to find the optimal set of spectral coefficients maximizing the signal reconstruction performance, as well as a constrained suboptimal set, where the positions of the spectral coefficients are structured so as to facilitate the design of the MCMW scheme. Finally, the approaches proposed in this thesis are experimentally validated using the UWB equipment of Lab-STICC CNRS UMR 6285.
12

Régularisations de Faible Complexité pour les Problèmes Inverses

Vaiter, Samuel 10 July 2014 (has links) (PDF)
Cette thèse se consacre aux garanties de reconstruction et de l'analyse de sensibilité de régularisation variationnelle pour des problèmes inverses linéaires bruités. Il s'agit d'un problème d'optimisation convexe combinant un terme d'attache aux données et un terme de régularisation promouvant des solutions vivant dans un espace dit de faible complexité. Notre approche, basée sur la notion de fonctions partiellement lisses, permet l'étude d'une grande variété de régularisations comme par exemple la parcimonie de type analyse ou structurée, l'antiparcimonie et la structure de faible rang. Nous analysons tout d'abord la robustesse au bruit, à la fois en termes de distance entre les solutions et l'objet original, ainsi que la stabilité de l'espace modèle promu. Ensuite, nous étudions la stabilité de ces problèmes d'optimisation à des perturbations des observations. À partir d'observations aléatoires, nous construisons un estimateur non biaisé du risque afin d'obtenir un schéma de sélection de paramètre.

Page generated in 0.0775 seconds