Spelling suggestions: "subject:"acquisition compressés"" "subject:"acquisition compressed""
1 |
Couplage de l'acquisition compressée et de l'imagerie du spectre de diffusionSaint-Amant, Etienne January 2011 (has links)
Ce mémoire porte sur la croisée des chemins de deux technologies récentes et fascinantes : l'imagerie du spectre de diffusion et l'acquisition compressée. L'imagerie du spectre de diffusion est issue de l'imagerie par résonance magnétique nucléaire. Elle permet d'observer la façon dont les molécules d'eau se déplacent dans le cerveau. Les molécules d'eau sont contraintes par la riche géométrie cellulaire des tissus cérébraux et les caractéristiques les plus probantes de cette géométrie peuvent être observées. En particulier, la diffusion est intimement liée à l'aspect fibreux de la matière blanche. L'information angulaire et l'information radiale de la matière blanche peuvent être déduites mathématiquement en analysant le signal du spectre de diffusion. À l'aide de ces informations, nous pouvons reconstruire le réseau de matière blanche du cerveau d'un patient (par tractographie) et en analyser l'intégrité (taille d'axone, démyélinisation, mort axonale). Cependant, la précision d'une technologie apporte souvent un défaut : son temps d'acquisition en tunnel IRM est prohibitif. L'acquisition compressée est une technologie récente, riche et complexe, issue de nombreuses branches différentes des mathématiques. Cette technologie peut s'appliquer sur l'acquisition de tous les types de signaux ou images. L'idée est d'acquérir de façon partielle les données et de résoudre un problème mathématique pour déduire quelle serait l'information complète (on déduit les données non mesurées). L'entièreté de cette technologie repose sur le principe fondamental suivant : les signaux/images d'intérêt ont la propriété d'être compressibles dans certaines bases de représentations. Cette technologie est particulièrement intéressante quand le temps d'acquisition est crucial ou que le nombre de mesures d'acquisition se doit d'être limité. Le sujet central de ce mémoire est de combiner l'acquisition compressée à l'imagerie du spectre de diffusion pour accélérer l'examen en tunnel IRM. Pour ce faire, nous avons développé une plate-forme informatique nous permettant d'analyser et de caractériser le couplage de ces deux technologies. Nous testons en détail nos méthodes sur des données générées synthétiquement et sur des données naturelles cérébrales in vivo. Finalement, nous proposons une méthode d'acquisition qui ferait passer le temps d'acquisition de 105 minutes à 29 minutes sans trop de perte perceptuelle par rapport à l'imagerie du spectre de diffusion acquise de façon exhaustive. Nous concluons avec un ensemble de pistes de solution pour pousser encore plus loin l'accélération de l'acquisition.
|
2 |
Imagerie par résonance magnétique in vivo de la vascularisation cérébrale chez la souris : optimisation et accélération par acquisition compressée / In vivo magnetic resonance imaging of the mouse neurovasculature : optimization and acceleration by compressed sensingFouquet, Jérémie January 2016 (has links)
Résumé : Imager la vascularisation cérébrale de la manière la plus exacte, précise et rapide possible représente un enjeu important pour plusieurs domaines de recherche. En plus d’aider à mieux comprendre le fonctionnement normal du cerveau, cela peut servir à caractériser diverses pathologies ou à développer de nouveaux traitements. Dans un premier temps, ce mémoire présente l’optimisation d’une technique d’angiographie cérébrale in vivo chez un modèle animal fréquemment utilisé, la souris. La technique emploie une séquence d’imagerie par résonance magnétique (IRM) 3D pondérée en susceptibilité ainsi qu’un agent de contraste, le Resovist. Les paramètres d’acquisition à l’IRM ont été optimisés à l’aide d’images acquises avant l’injection du Resovist. Ces paramètres permettent d’imager le cerveau entier en 41 minutes avec une résolution de 78 × 78 × 104 μm3. L’emploi d’une pondération en susceptibilité offre une excellente sensibilité aux petits vaisseaux (diamètre ≃ 40μm). L’analyse des images permet d’extraire des informations sur la morphologie vasculaire. Dans un second temps, la méthode de l’acquisition compressée (AcqC) a été implémentée dans le but d’accélérer l’acquisition des images angiographiques. La méthode de l’AcqC utilise des hypothèses de compressibilité des images pour diminuer la quantité de données acquise. L’AcqC a jusqu’à présent principalement été développée pour des images réelles (au sens des nombres complexes). Or, les images angiographiques obtenues présentent d’importantes variations de phase en raison de la pondération en susceptibilité. La présence de ces variations diminue d’une part la force des hypothèses de compressibilité habituelles et rend d’autre part l’espace-k moins propice au sous-échantillonnage requis par l’AcqC. En raison de ces deux facteurs, l’AcqC standard s’avère inefficace pour accélérer l’acquisition des images angiographiques acquises. Leur mise en lumière suggère cependant différentes pistes pour améliorer l’AcqC appliquée aux images comportant d’importantes variations de phase. / Abstract : Imaging neurovasculature with highest exactitude, precision and speed is of critical importance for several research fields. Beside providing an insight on normal brain activity, it can help characterize numerous pathologies or develop novel treatments. This thesis presents in its first part the optimization of a cerebral angiographic in vivo technique in a frequently used animal model, the mouse. The technique uses both a 3D magnetic resonance imaging (MRI) susceptibility weighted sequence and a strongly paramagnetic contrast agent, Resovist. MRI acquisition parameters were optimized using images acquired before contrast agent injection. Those parameters allow whole brain vascular imaging of the mouse brain in 41 minutes with a 78 × 78 × 104 μm3 resolution. Susceptibility weighting offers an excellent detection sensitivity for small vessels (diameter ≃ 40μm). Image treatment and analysis allow the extraction of vascular morphological information such as vessel size and vessel density. In the second part of this thesis, an attempt to accelerate angiographic images acquisition using the compressed sensing (CS) method is presented. CS method aims at reducing the acquired data by using compressibility hypothesis on images. Presently, CS is mainly developped for real images (within the meaning of complex numbers). However,
the previously obtained angiographic images contain important phase variations due to
the susceptibility weighting. First, those variations reduce the strength of the compressibility hypothesis normally used in CS. Second, those same variations make information distribution in k-space less appropriate for the undersampling required by CS. For those reasons, standard CS does not allow significant acceleration of the acquisition process for the presented angiographic technique. Studying those reasons however suggests new ways to increase CS efficiency when applied to images with important phase variations.
|
3 |
Modélisation locale en imagerie par résonance magnétique de diffusion : de l'acquisition comprimée au connectomePaquette, Michael January 2017 (has links)
L’imagerie par résonance magnétique pondérée en diffusion est une modalité d’imagerie médicale non invasive qui permet de mesurer les déplacements microscopiques des molécules d’eau dans les tissus biologiques. Il est possible d’utiliser cette information pour inférer la structure du cerveau. Les techniques de modélisation locale de la diffusion permettent de calculer l’orientation et la géométrie des tissus de la matière blanche.
Cette thèse s’intéresse à l’optimisation des métaparamètres utilisés par les modèles locaux. Nous dérivons des paramètres optimaux qui améliorent la qualité des métriques de diffusion locale, de la tractographie de la matière blanche et de la connectivité globale. L’échantillonnage de l’espace-q est un des paramètres principaux qui limitent les types de modèle et d’inférence applicable sur des données acquises en clinique. Dans cette thèse, nous développons une technique d’échantillonnage de l’espace-q permettant d’utiliser l’acquisition comprimée pour réduire le temps d’acquisition nécessaire.
|
4 |
Acquisition compressée en IRM de diffusionMerlet, Sylvain 11 September 2013 (has links) (PDF)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d'accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse.
|
5 |
Acquisition compressée en IRM de diffusionMerlet, Sylvain 11 September 2013 (has links) (PDF)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d'accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse.
|
6 |
Détection de points d'intérêts dans une image multi ou hyperspectral par acquisition compressée / Feature detection in a multispectral image by compressed sensingRousseau, Sylvain 02 July 2013 (has links)
Les capteurs multi- et hyper-spectraux génèrent un énorme flot de données. Un moyende contourner cette difficulté est de pratiquer une acquisition compressée de l'objet multi- ethyper-spectral. Les données sont alors directement compressées et l'objet est reconstruitlorsqu'on en a besoin. L'étape suivante consiste à éviter cette reconstruction et à travaillerdirectement avec les données compressées pour réaliser un traitement classique sur un objetde cette nature. Après avoir introduit une première approche qui utilise des outils riemannienspour effectuer une détection de contours dans une image multispectrale, nous présentonsles principes de l'acquisition compressée et différents algorithmes utilisés pour résoudre lesproblèmes qu'elle pose. Ensuite, nous consacrons un chapitre entier à l'étude détaillée de l'und'entre eux, les algorithmes de type Bregman qui, par leur flexibilité et leur efficacité vontnous permettre de résoudre les minimisations rencontrées plus tard. On s'intéresse ensuiteà la détection de signatures dans une image multispectrale et plus particulièrement à unalgorithme original du Guo et Osher reposant sur une minimisation L1. Cet algorithme estgénéralisé dans le cadre de l'acquisition compressée. Une seconde généralisation va permettrede réaliser de la détection de motifs dans une image multispectrale. Et enfin, nous introduironsde nouvelles matrices de mesures qui simplifie énormément les calculs tout en gardant debonnes qualités de mesures. / Multi- and hyper-spectral sensors generate a huge stream of data. A way around thisproblem is to use a compressive acquisition of the multi- and hyper-spectral object. Theobject is then reconstructed when needed. The next step is to avoid this reconstruction and towork directly with compressed data to achieve a conventional treatment on an object of thisnature. After introducing a first approach using Riemannian tools to perform edge detectionin multispectral image, we present the principles of the compressive sensing and algorithmsused to solve its problems. Then we devote an entire chapter to the detailed study of one ofthem, Bregman type algorithms which by their flexibility and efficiency will allow us to solvethe minimization encountered later. We then focuses on the detection of signatures in amultispectral image relying on an original algorithm of Guo and Osher based on minimizingL1. This algorithm is generalized in connection with the acquisition compressed. A secondgeneralization will help us to achieve the pattern detection in a multispectral image. Andfinally, we introduce new matrices of measures that greatly simplifies calculations whilemaintaining a good quality of measurements.
|
7 |
Récepteur radiofréquence basé sur l’échantillonnage parcimonieux pour de l'extraction de caractéristiques dans les applications de radio cognitive / Radiofrequency receiver based on compressive sampling for feature extraction in cognitive radio applicationsMarnat, Marguerite 29 November 2018 (has links)
Cette thèse traite de la conception de récepteurs radiofréquences basés sur l'acquisition compressée pour de l'estimation paramétrique en radio cognitive.L'acquisition compressée est un changement de paradigme dans la conversion analogique-numérique qui permet de s'affranchir de la fréquence d'échantillonnage de Nyquist.Dans ces travaux, les estimations sont effectuées directement sur les échantillons compressés vu le coût prohibitif de la reconstruction du signal d'entrée.Tout d'abord, l'aspect architecture du récepteur est abordé,avec notamment le choix des codes de mélange pour le convertisseur modulé à large bande (MWC).Une analyse haut niveau des propriétés de la matrice d'acquisition, à savoir la cohérence pour réduire le nombre de mesures et l'isométrie pour la robustesse au bruit,est menée puis validée par une plateforme de simulation.Enfin l'estimation paramétrique à partir des échantillons compressés est abordée à travers la borne de Cramér-Rao sur la variance d'un estimateur non biaisé.Une forme analytique de la matrice de Fisher est établie sous certaines hypothèses et permet de dissocier les effets de la compression et de la création de diversité.L'influence du processus d'acquisition compressée, notamment le couplage entre paramètres et la fuite spectrale, est illustré par l'exemple. / This work deals with the topic of radiofrequency receivers based on Compressive Sampling for feature extraction in Cognitive Radio.Compressive Sampling is a paradigm shift in analog to digital conversion that bypasses the Nyquist sampling frequency.In this work, estimations are carried out directly on the compressed samples due to the prohibitive cost of signal reconstruction.First, the receiver architecture is considered, in particular through the choice of the mixing codes of the Modulated Wideband Converter.A high-level analysis on properties of the sensing matrix, coherence to reduce the number of measurement and isometry for noise robustness,is carried out and validated by a simulation platform.Finally, parametric estimation based on compressed samples is tackled through the prism of the Cram'{e}r-Rao lower bound on unbiased estimators.A closed form expression of the Fisher matrix is established under certain assumptions and enables to dissociate the effects of compression and diversity creation.The influence of Compressive Sampling on estimation bounds, in particular coupling between parameters and spectral leakage, is illustrated by the example.
|
8 |
Traitement des signaux parcimonieux et applicationsAZIZ SBAI, Si Mohamed 20 November 2012 (has links) (PDF)
Quel que soit le domaine d'application, il est nécessaire de tirer profit de toute l'information a priori dans le but d'optimiser les résultats ou parfois même de manière à rendre un problème soluble. Dans ce contexte, la notion de parcimonie a émergé comme un a priori fondamental ces dernières années. On dit qu'un signal est parcimonieux dans une base s'il peut être décrit par un faible nombre de coefficients non nuls dans cette base. L'objet de cette thèse est l'étude de nouveaux apports de l'hypothèse de parcimonie au traitement du signal. Deux domaines d'applications sont considérés. Outre l'utilisation de la parcimonie, ces deux domaines ont en commun la résolution de problèmes inverses sous-déterminés. Le premier concerne la séparation de sources. Dans ce domaine, la parcimonie a conduit au développement de différentes méthodes de séparation de sources. Les performances de ces méthodes sont sensibles au choix de certains paramètres, habituellement choisis de manière empirique. Dans cette thèse, on propose un formalisme statistique qui permet de réduire le nombre de ces paramètres, tout en préservant la qualité de la séparation. Le second domaine d'application étudié est l'acquisition compressée des signaux à alphabet fini. Une telle acquisition compressée permet de réduire la dimension des signaux à alphabet fini, tout en gardant l'information nécessaire à leur reconstruction. Une formalisation du problème permet de le relier à celui de la reconstruction des signaux parcimonieux à partir de mesures incomplètes. Cette thèse est donc une exploration de nouvelles problématiques où l'intégration de la parcimonie conduit à de bonnes performances.
|
9 |
Acquisition compressée en IRM de diffusion / Compressive sensing in diffusion MRIMerlet, Sylvain 11 September 2013 (has links)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d’accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse. / This thesis is dedicated to the development of new acquisition and processing methods in diffusion MRI (dMRI) to characterize the diffusion of water molecules in white matter fiber bundles at the scale of a voxel. In particular, we focus our attention on the accurate recovery of the Ensemble Average Propagator (EAP), which represents the full 3D displacement of water molecule diffusion. Diffusion models such that the Diffusion Tensor or the Orientation Distribution Function (ODF) are largely used in the dMRI community in order to quantify water molecule diffusion. These models are partial EAP representations and have been developed due to the small number of measurement required for their estimations. It is thus of utmost importance to be able to accurately compute the EAP and order to acquire a better understanding of the brain mechanisms and to improve the diagnosis of neurological disorders. Estimating the full 3D EAP requires the acquisition of many diffusion images sensitized todifferent orientations in the q-space, which render the estimation of the EAP impossible in most of the clinical dMRI scanner. A surge of interest has been seen in order to decrease this time for acquisition. Some works focus on the development of new and efficient acquisition sequences. In this thesis, we use sparse coding techniques, and in particular Compressive Sensing (CS) to accelerate the computation of the EAP. Multiple aspects of the CS theory and its application to dMRI are presented in this thesis.
|
10 |
Applications du Compressed Sensing à l'imagerie biologique de microscopieMarim, Marcio 08 April 2011 (has links) (PDF)
La technique d'acquisition compressée (compressed sensing, CS) est une nouvelle théorie pour l'échantillonnage qui fût introduite afin de permettre l'acquisition ef- ficace de signaux compressibles. Dans cette thèse, nous avons étudié des applica- tions pratiques de cette technique d'échantillonnage, où les acquisitions sont réal- isées dans le domaine de Fourier, menant aux deux principales contributions suiv- antes : (i) Débruitage d'image : Les images microscopiques présentent souvent des dégradations dûs à des artefacts complexes, associés à du bruit ou encore des mauvaises conditions d'éclairage. En microscopie à fluorescence, le bruit et le pho- toblanchiment altèrent la qualité de l'image. Notre travail a consisté à exploiter la théorie d'acquisition compressée comme un outil de débruitage d'image. Nous avons utilisé plusieurs acquisitions aléatoires dans le domaine de Fourier, et la variation totale comme un a priori sur la parcimonie spatiale. La composition des différentes images de reconstruction correspondant aux différents ensembles de mesures aléa- toires renforce la cohérence spatiale de composants du signal significatifs et per- met de décorréler les composants bruités. Nous avons étudié les relations entre la parcimonie d'un signal et les statistiques et la performance pour la réduction du bruit sous différentes conditions initiales de bruitage. Nous avons montré que la technique proposée, basée sur un a priori sur la parcimonie du signal et sur des échantillonnages aléatoires dans le domaine de Fourier, permet d'obtenir des im- ages avec un rapport signal/bruit (SNR) au pire égal à celui obtenu avec les méth- odes de débruitage classiques, tout en utilisant un nombre limité d'échantillons. Sous réserve de pouvoir acquérir l'image dans le domaine de Fourier, le schéma de débruitage proposé fournirait une méthode d'acquisition rapide nécessitant un temps d'exposition moindre, réduisant les effets de photoblanchiment. (ii) Acquisi- tion compressée en microscopie holographique : En microscopie, les données en sortie deviennent considérables, impliquant notamment l'utilisation de capteurs haute-définition (i.e. beaucoup d'échantillons par acquisition) et l'augmentation des temps d'acquisition. La théorie de l'acquisition compressée fournit des outils pour la reconstruction d'images, nécessitant moins d'échantillons que les approches clas- siques. Cependant, les quelques mesures nécessaires doivent être prises dans un domaine incohérent au domaine spatiale, ce qui est difficile à réaliser en microscopie conventionnelle. Nous avons tout d'abord proposé un schéma de calcul permettant l'acquisition de séquences temporelles de mesures d'amplitude dans le domaine de Fourier, et l'estimation de l'information manquante sur la phase par interpolation de spectre de quelques acquisitions complètes d'images. Cette approche a été mise en pratique dans le contexte de l'imagerie rapide, utilisée pour des cellules en mou- vement. Dans un deuxième temps nous avons implanté un schéma d'acquisition compressée pratique, conçu pour l'holographie numérique. Ce schéma permet de mesurer une figure de diffraction du champ optique et reconstruire images de haute qualité à partir de seulement 7% de mesures aléatoires. L'expérience d'acquisition compressée a été étendue avec succès à l'holographie compressée rapide à acquisition unique et dans des conditions d'éclairage faible.
|
Page generated in 0.2283 seconds