Spelling suggestions: "subject:"propagateur dde diffusion"" "subject:"propagateur dee diffusion""
1 |
Acquisition compressée en IRM de diffusionMerlet, Sylvain 11 September 2013 (has links) (PDF)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d'accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse.
|
2 |
Acquisition compressée en IRM de diffusionMerlet, Sylvain 11 September 2013 (has links) (PDF)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d'accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse.
|
3 |
Etude du passage micro-macro pour le transport par diffusion en milieu poreux. Application aux expériences de RMN-GCPRodts, Stéphane 25 October 2001 (has links) (PDF)
Ce travail a un double but : <br />1) Observer et identifier les mécanismes physiques via lesquels, dans les matériaux poreux homogènes, les lois microscopiques du transport par diffusion induisent généralement des lois de transport effectives macroscopiques très simples, quelque soit la complexité du réseaux poreux sous jacent.<br />2) Contribuer à développer le cadre d'interprétation des expériences RMN de Gradient de Champ Pulsé (GCP) pour la mesure de l'autodiffusion dans les fluides confinés dans les systèmes poreux.<br />Nous étudions le cas académique de la diffusion Fickienne sans adsorption. Nous observons le transport à échelle de longueur fixée, en suivant la cinétique avec laquelle "s'affaisse" par diffusion l'amplitude G(q,t) de "profils de concentration sinusoïdaux" de vecteur d'onde q variable. Vis à vis de la RMN cette approche revient à étudier le propagateur de diffusion G(q,t) - grandeur mesurée par l'expérience - de manière non traditionnelle, c'est à dire, à q fixé en fonction du temps t. A q donné, 3 régimes de temps sont mis en évidence : un régime de temps court de diffusion non confinée, un régime de temps intermédiaire renseignant sur la diffusion à l'échelle de longueur 2pi/q, et un régime de temps long sensible à la "dimensionnalité" de l'espace poral.<br />Nous caractérisons la cinétique d'affaissement aux temps intermédiaires par un coefficient e diffusion D(q). Son étude théorique et expérimentale en fonction de q dans des systèmes périodiques et/ou désordonnés simples fait apparaître clairement trois phénomènes lors du passage micro-macro : une première interaction avec l'interface, une différentiation brutale du rôle des différents pores, puis une diffusion anormale due à cette différentialité, susceptible de perdurer aux échelles macroscopiques, et suivie par un retour au régime "Fickien".<br />Une expérience macroscopique de traceur est enfin proposée et développée pour observer ces phénomènes de diffusion anormale dans quelques systèmes modèles.
|
4 |
Acquisition compressée en IRM de diffusion / Compressive sensing in diffusion MRIMerlet, Sylvain 11 September 2013 (has links)
Cette thèse est consacrée à l'élaboration de nouvelles méthodes d'acquisition et de traitement de données en IRM de diffusion (IRMd) afin de caractériser la diffusion des molécules d'eau dans les fibres de matière blanche à l'échelle d'un voxel. Plus particulièrement, nous travaillons sur un moyen de reconstruction précis de l'Ensemble Average Propagator (EAP), qui représente la fonction de probabilité de diffusion des molécules d'eau. Plusieurs modèles de diffusion tels que le tenseur de diffusion ou la fonction de distribution d'orientation sont très utilisés dans la communauté de l'IRMd afin de quantifier la diffusion des molécules d'eau dans le cerveau. Ces modèles sont des représentations partielles de l'EAP et ont été développés en raison du petit nombre de mesures nécessaires à leurs estimations. Cependant, il est important de pouvoir reconstruire précisément l'EAP afin d'acquérir une meilleure compréhension des mécanismes du cerveau et d'améliorer le diagnostique des troubles neurologiques. Une estimation correcte de l'EAP nécessite l'acquisition de nombreuses images de diffusion sensibilisées à des orientations différentes dans le q-space. Ceci rend son estimation trop longue pour être utilisée dans la plupart des scanners cliniques. Dans cette thèse, nous utilisons des techniques de reconstruction parcimonieuses et en particulier la technique connue sous le nom de Compressive Sensing (CS) afin d’accélérer le calcul de l'EAP. Les multiples aspects de la théorie du CS et de son application à l'IRMd sont présentés dans cette thèse. / This thesis is dedicated to the development of new acquisition and processing methods in diffusion MRI (dMRI) to characterize the diffusion of water molecules in white matter fiber bundles at the scale of a voxel. In particular, we focus our attention on the accurate recovery of the Ensemble Average Propagator (EAP), which represents the full 3D displacement of water molecule diffusion. Diffusion models such that the Diffusion Tensor or the Orientation Distribution Function (ODF) are largely used in the dMRI community in order to quantify water molecule diffusion. These models are partial EAP representations and have been developed due to the small number of measurement required for their estimations. It is thus of utmost importance to be able to accurately compute the EAP and order to acquire a better understanding of the brain mechanisms and to improve the diagnosis of neurological disorders. Estimating the full 3D EAP requires the acquisition of many diffusion images sensitized todifferent orientations in the q-space, which render the estimation of the EAP impossible in most of the clinical dMRI scanner. A surge of interest has been seen in order to decrease this time for acquisition. Some works focus on the development of new and efficient acquisition sequences. In this thesis, we use sparse coding techniques, and in particular Compressive Sensing (CS) to accelerate the computation of the EAP. Multiple aspects of the CS theory and its application to dMRI are presented in this thesis.
|
Page generated in 0.0902 seconds