• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur la résolution minimale des idéaux d'arrangement de points génériques dans les espaces projectifs

Lauze, François 28 September 1994 (has links) (PDF)
Le but de ce travail est d'étudier la résolution minimale des idéaux d'arrangement de points en position générale dans les espaces projectifs. Carlos Simpson et André Hirschowitz réduisent le problème à un calcul de rang maximal (c'est à dire surjectivité ou injectivité) pour les morphismes de restriction $$ H^0(P^n,\wedge^k T_{P^n}(l))\to \wedge^k T_{P^n}(l)ı_{Z_1}\oplus\dots T_{P^n}(l)ı_{Z_s} $$ où $Z_1,\dots Z_z$ sont des points de $P^n$. Ils montrent ensuite que pour un grand nombre de points ou de façon équivalente pour un degré $l$ suffisamment grand, on a la propriété de rang maximal. Ils déduisent cette propriété , grâce µa la méthode d'Horace, d'un certain nombres de situations de rang maximal modulo les dimensions 2 et 3. Dans cette thèse on étudie et prouve systématiquement le rang maximal pour ces situations en dimension 2 et 3. On donne aussi une borne inférieure du degré pour laquelle ces énoncés sont valables. Le chapitre 6 montre comment, en raffinant les procédés de Simpson et Hirschowitz, obtenir une preuve de l'énonc¶e déjà connu pour $T_{P^3} (l)$. Le chapitre 7 reprend alors la méthode pour obtenir une preuve pour $T_{P^4} (l)$.

Page generated in 0.1057 seconds