• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling Primary Energy Consumption under Model Uncertainty

Csereklyei, Zsuzsanna, Humer, Stefan 11 1900 (has links) (PDF)
This paper examines the long-term relationship between primary energy consumption and other key macroeconomic variables, including real GDP, labour force, capital stock and technology, using a panel dataset for 64 countries over the period 1965-2009. Deploying panel error correction models, we find that there is a positive relationship running from physical capital, GDP, and population to primary energy consumption. We observe however a negative relationship between total factor productivity and primary energy usage. Significant differences arise in the magnitude of the cointegration coefficients, when we allow for differences in geopolitics and wealth levels. We also argue that inference on the basis of a single model without taking model uncertainty into account can lead to biased conclusions. Consequently, we address this problem by applying simple model averaging techniques to the estimated panel cointegration models. We find that tackling the uncertainty associated with selecting a single model with model averaging techniques leads to a more accurate representation of the link between energy consumption and the other macroeconomic variables, and to a significantly increased out-of-sample forecast performance. (authors' abstract) / Series: Department of Economics Working Paper Series
2

Essays in Total Factor Productivity measurement

Severgnini, Battista 16 August 2010 (has links)
Diese Dissertation umfasst sowohl einen theoretisches als auch einen empirischen Beitrag zur Analyse der Messung der gesamten Faktorproduktivität (TFP). Das erste Kapitel inspiziert die bestehende Literatur über die häufigsten Techniken der TFP Messung und gibt einen Überblick über deren Limitierung. Das zweite Kapitel betrachtet Daten, die durch ein Real Business Cycle Modell generiert wurden und untersucht das quantifizierbare Ausmaß von Messfehlern des Solow Residuums als ein Maß für TFP Wachstum, wenn der Kapitalstock fehlerhaft gemessen wird und wenn Kapazitätsauslastung und Abschreibungen endogen sind. Das dritte Kapitel schlägt eine neue Methodologie in einem bayesianischen Zusammenhang vor, die auf Zustands- Raum-Modellen basiert. Das vierte Kapitel führt einen neuen Ansatz zur Bestimmung möglicher Spill-over Effekte auf Grund neuer Technologien auf die Produktivität ein und kombiniert eine kontrafaktische Zerlegung, die von den Hauptannahmen des Malquist Indexes abgeleitet wird mit ökonometrischen Methoden, die auf Machado and Mata (2005) zurückgehen. / This dissertation consists of theoretical and empirical contributions to the study on Total Factor Productivity (TFP) measurement. The first chapter surveys the literature on the most used techniques in measuring TFP and surveys the limits of these frameworks. The second chapter considers data generated from a Real Business Cycle model and studies the quantitative extent of measurement error for the Solow residual as a measure of TFP growth when the capital stock is measured with error and when capacity utilization and depreciation are endogenous. Furthermore, it proposes two alternative measurements of TFP growth which do not require capital stocks. The third chapter proposes a new methodology based on State-space models in a Bayesian framework. Applying the Kalman Filter to artificial data, it proposes a computation of the initial condition for productivity growth based on the properties of the Malmquist index. The fourth chapter introduces a new approach for identifying possible spillovers emanating from new technologies on productivity combining a counterfactual decomposition derived from the main properties of the Malmquist index and the econometric technique introduced by Machado and Mata (2005).

Page generated in 0.0602 seconds