• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 257
  • 108
  • 61
  • 38
  • 17
  • 10
  • 8
  • 8
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 598
  • 543
  • 353
  • 80
  • 59
  • 52
  • 52
  • 49
  • 48
  • 43
  • 39
  • 38
  • 34
  • 33
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Identification of residues of the Plasmodium falciparum variant antigen protein PfEMP1 that are involved in binding ICAM-1 /

Reagan, Jennifer K. January 2006 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2006. Dept. of Biological Sciences. / Includes bibliographical references (leaves 80-84).
242

T cell and antibody responses in Plasmodium falciparum malaria and their relation to disease susceptibility

Farouk, Salah Eldin January 2004 (has links)
Malaria antigen-induced polarization of T cells into effectors Th1 and/or Th2 cells and their subsequent release of cytokines is known to affect antibody production. This thesis includes studies on early innate responses to the parasite, with a focus on γδT cells, and acquired specific responses in African sympatric ethnic tribes. In the last part of this thesis, a method for enrichment for the asexual blood stages of P. falciparum and their use in in vitro T-cell studies is presented. To investigate mechanisms involved in parasite growth inhibition by γδT cells, an in vitro system was set up using blood stage parasites co-cultured with differently treated γδT cells. The results showed that Vγ9/δ2+ γδT cells inhibited the in vitro growth of P. falciparum parasites whereas CD4+ and CD8+ T cells did not. This inhibition was positively correlated with the expression of cytolytic molecules in the cell lines tested. Anti-granulysin antibodies reversed γδT cell-mediated inhibition, suggesting a role for granulysin in the parasite growth inhibition. Thus, our data suggest that Vγ9/δ2+ γδT cells inhibit the parasite growth by a granulysin-exocytosis dependent cytotoxic pathway that needs perforin. To study the humoral responses and their relation to Th1/Th2 cytokine profiles, antibody levels, numbers of cytokine-producing cells and spleen rates were measured in two sympatric tribes living in Mali, the Fulani and the Dogon. Our results revealed significantly elevated malaria-specific IgG and IgE antibody levels and spleen rates in the Fulani compared to the Dogon. The Fulani exhibited elevated numbers of both IL-4 and IFN-γ-producing cells, a typical profile seen of CD1-restricted NKT cells. This together with the higher spleen rates and elevated anti-malarial antibodies suggests a role of CD1-restricted cells in the different responses seen between these tribes. To investigate whether such responses were specifically confined to malaria or a reflection of a generally activated immune system, total levels of IgG and of IgM as well as IgG antibodies to non-malarial antigens were examined in the Fulani in Burkina Faso and Mali. The results showed that the Fulani consistently mounted stronger malaria-specific IgG, IgG1, IgG3 and IgM responses. Total IgM levels were significantly higher in the Fulani than the non-Fulani, whereas total IgG did not differ between the two tribes. While IgG levels to some non-malarial antigens were significantly higher in the Fulani, no such differences were seen in the responses to several other non-malarial antigens suggesting that the Fulani are not generally hyper-reactive and that other specific factors are of importance for their higher malaria resistance. Finally, a new method to enrich for early and late asexual blood stages of P. falciparum parasite from a single parasite culture was developed, using a 3-step centrifugation procedure. Such enriched parasite fractions beside other malaria-parasite antigen preparations were used in an in vitro system to analyse T-cell responses in malaria-exposed and non-exposed donors. Such analysis revealed significant proliferative cell response and CD4+ T cell expansion to whole-cell parasite antigens, but not to acellular parasite fractions, in the malaria-exposed as compared to the non-exposed ones. Our data suggest that natural infection preferentially leads to formation of memory cells against certain antigen expressed in live parasites. Malaria antigen-induced polarization of T cells into effectors Th1 and/or Th2 cells and their subsequent release of cytokines is known to affect antibody production. This thesis includes studies on early innate responses to the parasite, with a focus on γδT cells, and acquired specific responses in African sympatric ethnic tribes. In the last part of this thesis, a method for enrichment for the asexual blood stages of P. falciparum and their use in in vitro T-cell studies is presented. To investigate mechanisms involved in parasite growth inhibition by γδT cells, an in vitro system was set up using blood stage parasites co-cultured with differently treated γδT cells. The results showed that Vγ9/δ2+ γδT cells inhibited the in vitro growth of P. falciparum parasites whereas CD4+ and CD8+ T cells did not. This inhibition was positively correlated with the expression of cytolytic molecules in the cell lines tested. Anti-granulysin antibodies reversed γδT cell-mediated inhibition, suggesting a role for granulysin in the parasite growth inhibition. Thus, our data suggest that Vγ9/δ2+ γδT cells inhibit the parasite growth by a granulysin-exocytosis dependent cytotoxic pathway that needs perforin. To study the humoral responses and their relation to Th1/Th2 cytokine profiles, antibody levels, numbers of cytokine-producing cells and spleen rates were measured in two sympatric tribes living in Mali, the Fulani and the Dogon. Our results revealed significantly elevated malaria-specific IgG and IgE antibody levels and spleen rates in the Fulani compared to the Dogon. The Fulani exhibited elevated numbers of both IL-4 and IFN-γ-producing cells, a typical profile seen of CD1-restricted NKT cells. This together with the higher spleen rates and elevated anti-malarial antibodies suggests a role of CD1-restricted cells in the different responses seen between these tribes. To investigate whether such responses were specifically confined to malaria or a reflection of a generally activated immune system, total levels of IgG and of IgM as well as IgG antibodies to non-malarial antigens were examined in the Fulani in Burkina Faso and Mali. The results showed that the Fulani consistently mounted stronger malaria-specific IgG, IgG1, IgG3 and IgM responses. Total IgM levels were significantly higher in the Fulani than the non-Fulani, whereas total IgG did not differ between the two tribes. While IgG levels to some non-malarial antigens were significantly higher in the Fulani, no such differences were seen in the responses to several other non-malarial antigens suggesting that the Fulani are not generally hyper-reactive and that other specific factors are of importance for their higher malaria resistance. Finally, a new method to enrich for early and late asexual blood stages of P. falciparum parasite from a single parasite culture was developed, using a 3-step centrifugation procedure. Such enriched parasite fractions beside other malaria-parasite antigen preparations were used in an in vitro system to analyse T-cell responses in malaria-exposed and non-exposed donors. Such analysis revealed significant proliferative cell response and CD4+ T cell expansion to whole-cell parasite antigens, but not to acellular parasite fractions, in the malaria-exposed as compared to the non-exposed ones. Our data suggest that natural infection preferentially leads to formation of memory cells against certain antigen expressed in live parasites. Malaria antigen-induced polarization of T cells into effectors Th1 and/or Th2 cells and their subsequent release of cytokines is known to affect antibody production. This thesis includes studies on early innate responses to the parasite, with a focus on γδT cells, and acquired specific responses in African sympatric ethnic tribes. In the last part of this thesis, a method for enrichment for the asexual blood stages of P. falciparum and their use in in vitro T-cell studies is presented. To investigate mechanisms involved in parasite growth inhibition by γδT cells, an in vitro system was set up using blood stage parasites co-cultured with differently treated γδT cells. The results showed that Vγ9/δ2+ γδT cells inhibited the in vitro growth of P. falciparum parasites whereas CD4+ and CD8+ T cells did not. This inhibition was positively correlated with the expression of cytolytic molecules in the cell lines tested. Anti-granulysin antibodies reversed γδT cell-mediated inhibition, suggesting a role for granulysin in the parasite growth inhibition. Thus, our data suggest that Vγ9/δ2+ γδT cells inhibit the parasite growth by a granulysin-exocytosis dependent cytotoxic pathway that needs perforin. To study the humoral responses and their relation to Th1/Th2 cytokine profiles, antibody levels, numbers of cytokine-producing cells and spleen rates were measured in two sympatric tribes living in Mali, the Fulani and the Dogon. Our results revealed significantly elevated malaria-specific IgG and IgE antibody levels and spleen rates in the Fulani compared to the Dogon. The Fulani exhibited elevated numbers of both IL-4 and IFN-γ-producing cells, a typical profile seen of CD1-restricted NKT cells. This together with the higher spleen rates and elevated anti-malarial antibodies suggests a role of CD1-restricted cells in the different responses seen between these tribes. To investigate whether such responses were specifically confined to malaria or a reflection of a generally activated immune system, total levels of IgG and of IgM as well as IgG antibodies to non-malarial antigens were examined in the Fulani in Burkina Faso and Mali. The results showed that the Fulani consistently mounted stronger malaria-specific IgG, IgG1, IgG3 and IgM responses. Total IgM levels were significantly higher in the Fulani than the non-Fulani, whereas total IgG did not differ between the two tribes. While IgG levels to some non-malarial antigens were significantly higher in the Fulani, no such differences were seen in the responses to several other non-malarial antigens suggesting that the Fulani are not generally hyper-reactive and that other specific factors are of importance for their higher malaria resistance. Finally, a new method to enrich for early and late asexual blood stages of P. falciparum parasite from a single parasite culture was developed, using a 3-step centrifugation procedure. Such enriched parasite fractions beside other malaria-parasite antigen preparations were used in an in vitro system to analyse T-cell responses in malaria-exposed and non-exposed donors. Such analysis revealed significant proliferative cell response and CD4+ T cell expansion to whole-cell parasite antigens, but not to acellular parasite fractions, in the malaria-exposed as compared to the non-exposed ones. Our data suggest that natural infection preferentially leads to formation of memory cells against certain antigen expressed in live parasites.
243

Biochemical And Molecular Insights Into β-Hydroxyacyl-Acyl Carrier Protein Dehydratase (FabZ) From Plasmodium Falciparum

Kumar, Shailendra 10 1900 (has links)
Malaria, caused by Plasmodium, is one of the most devastating infectious diseases of the world in terms of mortality as well as morbidity (WHO, 2002). The development of resistance in the Plasmodium falciparum against the present antimalarials has made the situation very alarming (Trape et al., 2000). To combat this situation, new antimalarials as well as identification of new drug targets are urgently required. The discovery of the presence of type II fatty acid biosynthesis system in the malarial parasite has offered several promising new targets for this mission. This thesis describes the successful cloning of fabZ from Plasmodium falciparum, its expression in E. coli, single step affinity purification, kinetic characterization and most importantly discovery of two small molecule inhibitors (Sharma et al., 2003). The study was executed to gain insights into the structure and function of PfFabZ to get better understanding of the interactions with its substrate analogs, novel inhibitors and also acyl carrier protein (PfACP). The molecular details of the interactions of the two novel inhibitors were also determined. Lastly, the residues of PfFabZ important for the interaction with PfACP were successfully elucidated. Chapter 1 presents a brief review of the literature about the disease as well as the life cycle, biology and the metabolic pathways operational in malarial parasite, Plasmodium falciaparum. The discovery of type II FAS in P. falciparum and the aims and the scope of the thesis are also discussed. The quest of developing new antimalarials, study of the mechanism of actions of antimalarials such as quinine and its derivatives along with the major metabolic pathways (Purine, pyrimidine, phospholipids, carbohydrate metabolism, folate and heme biosynthesis pathways etc.) existing in P. falciparum are described in detail in this chapter. Origin and importance of apicoplast in P. falciaprum is also described in brief. For long, it was believed that Plasmodium spp. are incapable of de novo fatty acid synthesis but this view has undergone substantial revision due to the recent discovery of plant and bacterial type of fatty acid biosynthesis pathway in them (Surolia and Surolia, 2001). As this pathway is distinct from that of the human host it has accelerated the momentum for the discovery of new antimalarials (Surolia and Surolia, 2001). The Chapter also surveys the details of type II FAS in bacteria, particularly that of E. coli (Rock and Cronan, 1996). The dehydratase step which is the third step of fatty acid elongation cycle has been covered in considerable detail. Lastly, it focuses on the recent advancement in the understanding of fatty acid biosynthesis system in Plasmodium falciparum along with some inhibitors targeting the malarial FAS. As each enzyme of the Plasmodium FAS can serve as good antimalarial targets, my work focuses on the dehydratase step catalyzed by β-hydroxyacyl-ACP dehydratase (PfFabZ). Cloning, expression and kinetic characterization of PfFabZ forms the major content of Chapter 2. The PlasmoDB data base was searched for this gene and the mined out open reading frame contained sequence of the putative FabZ together with the bipartite leader polypeptide. Our aim was to clone the mature PfFabZ without the bipartite leader sequence. Amplification of the mature pffabZ using Plasmodium falciparum genomic DNA revealed the presence of an intron in the ORF and the gene was finally cloned by RT-PCR in pET-28a(+) vector. It was expressed with an N-terminal hexahistidine tag in BL-21(DE3) cells and purified to near homogeneity but the protein was insoluble and unstable. Truncation of 12 residues from the N-terminal end improved the stability and solubility of the protein by 3-5 fold. Truncated PfFabZ was used for all future experiments. FabZs from other sources are reported to be hexamer in solution but PfFabZ showed homodimeric arrangement in the conditions used for gel filtration as well as dynamic light scattering studies. Kinetics of PfFabZ was characterized using substrate analogs, β-hydroxybutryl-CoA (forward substrate) and Crotonoyl-CoA (reverse substrate). Both the forward and reverse reaction were thoroughly characterized by spectrophotometry and HPLC and the reverse reaction was found to be 7 times faster than the forward reaction. Km οf crotonoyl-CoA was calculated to be 86 µM and kcat/Km of 220 M-1s-1 whereas the Kmfor β-hydroxybutryl-CoA was found to be 199 µM and kcat/Kmof 80.2 M-1s-1. The kinetic data clearly indicates the higher affinity of PfFabZ for the reverse substrate. Chapter 3 describes the discovery of two small molecules inhibitors, NAS-21 and NAS-91 for PfFabZ, their detailed inhibition kinetics and their effect on the growth of Plasmodium falciparum in culture. These inhibitors were the first inhibitors to be reported for FabZ class of enzymes with an IC50 ranging below 15 µM. Both of them inhibited PfFabZ following competitive kinetics with respect to the substrates utilized for both the forward and reverse reactions. The inhibition data were analyzed by Lineweaver-Burk and Dixon plots and both inhibitors showed competitive inhibition kinetics with dissociation constant in submicromolar range. Binding constants for both the inhibitors were also determined by fluorescence titration method and were calculated to be 1.6 (± 0.04) X 106 M-1 for NAS-91 and 1.2 (± 0.03) X 106 M-1 for NAS-21. These inhibitors were checked on Plasmodium falciparum culture and both inhibited parasite growth with IC50 values of 7 µM and 100 µM for NAS-21 and NAS-91, respectively. They also inhibited the incorporation of [1,2-14C]-acetate in the fatty acids of the P. falciparum conforming the inhibition of fatty acid biosynthesis. FabZ class of enzymes are thought to contain His-Glu as a catalytic dyad. Based on the disparity in the arrangement of residues at the active site of the dimeric (Swarnamukhi et al., 2006) and hexameric forms of PfFabZ in the crystal structures (Kosteriva et al., 2005), we set out to elucidate the active site residues in PfFabZ which is described in Chapter 4. The role of each of the presumed active site residues His-133 and Glu-147 along with Arg-99 and His-98 were analyzed by chemical modification studies and site directed mutagenesis. Single and double mutants were prepared and the activity of the mutants was monitored by spectrophotometry and isothermal titration calorimetry (ITC). It was concluded that in PfFabZ, His-133 and Glu-147 makes the catalytic dyad, His-98 might be important in directing the substrate in correct orientation while Arg-99 is involved in maintaining the active site loop in proper orientation rather than taking direct part in catalysis. Chapter 4 also concludes that dimeric form of PfFabZ is inactive species and turns into active hexameric form in the presence of substrate. Chapter 5 describes the molecular details of NAS-21 and NAS-91 interactions with PfFabZ. The fact that both these compounds inhibited PfFabZ in competitive manner, prompted me to examine their interaction with the residues in the active site tunnel. Apart from the His-133 and Glu-147 catalytic dyad the only polar residue is His-98 and chemical modification and site directed mutagenesis studies were done to elucidate the interactions of these residues with NAS-21 and NAS-91. Both the inhibitors were able to protect the modification of histidines by DEPC in wild type PfFabZ, His-98-Ala mutant and His-133-Ala mutant but with differential strength, indicating that they do interact with histidines. The interaction of these inhibitors was further confirmed by determining the dissociation constants of wPfFabZ, His-98-Ala, His-133-Ala, His-98-Ala/His-133-Ala double mutant, Glu-147-Ala mutant by fluorescence titration method. The results obtained from chemical modification and fluorescence titration studies confirmed that NAS-21 interacts strongly with histidines, His-98 and His-133 but not with Glu-147. On the other hand NAS-91 interacts loosely with His-98 and His-133 but strongly with Glu-147. Chapter 5 concludes with the observation that both the inhibitors (NAS-21 and NAS-91) interact with the active site residues of PfFabZ, preventing the substrate to enter the active site tunnel. Acyl carrier protein (ACP) is a small acidic protein to which the acyl chain intermediates are tethered and shuttled from one enzyme to another for the completion of fatty acid elongation cycle. Whenever acyl carrier proteins are expressed in E. coli, they are present in three forms apo, holo and acyl-ACPs. Chapter 6 describes a novel method for the expression of histidine tagged PfACP in pure holo form, protocol for the cleavage of his-tag from PfACP by thrombin preparation of homogenous singly enriched ie PfACP [15N]-labeled or [13C]-labeled PfACP as well as doubly enriched [15N]-[13C] PfACP samples for its structure elucidation by NMR (Sharma et al., 2005). These studies also constituted reporting of a holo-ACP structure from any of the sources for the first time (Sharma, et. al. 2006). The purified pure holo-PfACP was further used for the interaction studies with PfFabZ. Earlier studies have shown that ACP interacts with FAS enzymes via helix II with conserved set of residues but the molecular details of the interactions are poorly known (Zhang, et. al., 2003). We have recently solved the NMR structure (Sharma, et. al., 2006) of PfACP and crystal structure of PfFabZ (Swarnamukhi, et. al., 2006). So, both the structures were docked using Cluspro server. Chapter 7 elucidates the roles of important residues on PfFabZ surface near the active site entry which are responsible for interacting with PfACP. The residues lining the active site entry were identified and mutated. The residues lining the active site tunnel of PfFabZ are Arg102, Lys104, Lys105, Lys123, Leu94, Phe95, Ala96, Gly97, Ile128, Ile145, Phe150 and Ala151. Charged residues were mutated to alanine and also to oppositely charged residues while the neutral residues were changed to charged residues. The interaction of PfFabZ mutants with PfACP was studied by ACP independent enzymatic assay and surface plasmon resonance (SPR) spectroscopy. It was concluded that PfFabZ and PfACP interaction is mainly governed by electrostatic interaction made by the charged residues (Lys104 being the most important residue) and is fine tuned by hydrophobic interactions. Chapter 8 summarizes the findings of the thesis. FabZ from Plasmodium falciparum was cloned and biochemically characterized. Two inhibitors for this enzyme were discovered and their molecular details of binding to PfFabZ were elucidated. The presence of catalytic dyad was confirmed and finally the residues of PfFabZ important for interaction with PfACP were elucidated. Appendix I describes the inhibition of PfENR (enoyl ACP reductase), the rate limiting and the fourth enzyme of the fatty acid elongation pathway by green tea extracts. Three tea catechins (EGCG, EGC and ECG) and two plant polyphenols (quercetin and buteine) were selected for the inhibition study. All the catechins inhibited PfENR potently with Ki values in nanomolar range. Among the five compounds studied, EGCG was found to be the best inhibitor. All of them blocked the NADH binding site showing competitive kinetics with respect to NADH and uncompetitive kinetics with crotonoyl-CoA, the substrate analog. Most importantly, the catechins potentiated the inhibition of PfENR by triclosan, a well known PfENR inhibitor. We also report that in the presence of tea catechins triclosan behaves as a slow-tight binding inhibitor of PfENR. The overall inhibition constant of triclosan in the presence of EGCG was calculated to be 2pM which is 50 times better than the earlier reported values with NAD+ (Kapoor, et. al., 2004).
244

Antígenos relevantes de Plasmodium vivax y Plasmodium falciparum detectados mediante inmunoblot : Iquitos 2004

Parraguez de la Cruz, Jorge Enrique, Santos Salcedo, Ricardo Alvaro January 2008 (has links)
El objetivo del presente trabajo fue identificar antígenos relevantes de valor diagnóstico de aislados de P. vivax y P. falciparum provenientes del departamento de Loreto, mediante la técnica de inmunoblot. Se seleccionaron pacientes entre 3 y 64 años con diagnóstico de malaria, gota gruesa positiva, procedentes de centros de salud en el departamento de Loreto. Fueron analizadas 4 mezclas de antígenos, una de P. falciparum (PF1) y tres de P. vivax (PV1, PV4 y PV5), preparadas a partir de 36 muestras de pacientes con alta parasitemia por P. vivax (2 700 – 69 000 parásitos/μL) y P. falciparum (2 750 – 10 000 parásitos/μL). Las mezclas de antígenos fueron enfrentadas a 39 sueros (12 de P. falciparum y 27 de P. vivax) mediante ensayos de inmunoblot.
245

Evaluation des pratiques professionnelles de la prise en charge du paludisme à Plasmodium falciparum chez l'adulte au CHU de Nantes

Maillard, Olivier Grossi, Olivier January 2009 (has links)
Reproduction de : Mémoire du D.E.S. : Pharmacie hospitalière et des collectivités : Nantes : 2009. Reproduction de : Thèse d'exercice : Pharmacie : Nantes : 2009. / Bibliogr.
246

Erythrocyte invasion by Plasmodium falciparum

Jones, Matthew L. January 2009 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2009. / Title from PDF title page (viewed on Feb. 10, 2010). Includes bibliographical references.
247

Characterisation of the plasmodium falciparum Hsp40 chaperones and their partnerships with Hsp70 /

Botha, Melissa. January 2008 (has links)
Thesis (Ph.D. (Biochemistry, Microbiology & Biotechnology)) - Rhodes University, 2009.
248

Genomic variation and evolution of the human malaria parasite Plasmodium falciparum

Chang, Hsiao-Han 08 June 2015 (has links)
Malaria is a deadly disease that causes nearly one million deaths each year. Understanding the demographic history of the malaria parasite Plasmodium falciparum and the genetic basis of its adaptations to antimalarial treatments and the human immune system is important for developing methods to control and eradicate malaria. To study the long-term demographic history and recent effective size of the population in order to identify genes under selection more efficiently and predict the effectiveness of selection, in Chapter 2 we sequenced the complete genomes of 25 cultured P. falciparum isolates from Senegal. In addition, in Chapter 3 we estimated temporal allele frequencies in 24 loci among 528 strains from the same population across six years. Based on genetic diversity of the genome sequences, we estimate the long-term effective population size to be approximately 100,000, and a major population expansion of the parasite population approximately 20,000-40,000 years ago. Based on temporal changes in allele frequencies, however, the recent effective size is estimated to be less than 100 from 2007-2011. The discrepancy may reflect recent aggressive efforts to control malaria in Senegal or migration between populations.
249

Harnessing Evolutionary Fitness in Plasmodium falciparum for Drug Discovery and Suppressing Resistance

Ross, Leila Saxby 18 October 2013 (has links)
Malaria is a preventable and treatable disease caused by infection with Plasmodium parasites. Complex socioeconomic and political factors limit access to vector control and antimalarial drugs, and an estimated 600,000 people die from malaria every year. Rising drug resistance threatens to make malaria untreatable. As for all new traits, resistance is limited by fitness, and a small number of pathways are heavily favored by evolution. These pathways are targets for drug discovery. Pairing compounds active against the wild-type and the small emerging resistant population, a strategy we termed "targeting resistance," could block the rise of competitively viable resistance.
250

Studying Different Clinical Syndromes Of Paediatric Severe Malaria Using Plasma Proteomics

Ramaprasad, Abhinay 08 1900 (has links)
Background- Severe Plasmodium falciparum malaria remains one of the major causes of childhood morbidity and mortality in Africa. Severe malaria manifests itself as three main clinical syndromes-impaired consciousness (cerebral malaria), respiratory distress and severe malarial anaemia. Cerebral malaria and respiratory distress are major contributors to malaria mortality but their pathophysiology remains unclear. Motivation/Objectives- Most children with severe malaria die within the first 24 hours of admission to a hospital because of their pathophysiological conditions. Thus, along with anti-malarial drugs, various adjuvant therapies such as fluid bolus (for hypovolaemia) and anticonvulsants (for seizures) are given to alleviate the sick child’s condition. But these therapies can sometimes have adverse effects. Hence, a clear understanding of severe malaria pathophysiology is essential for making an informed decision regarding adjuvant therapies. Methodology- We used mass spectrometry-based shotgun proteomics to study plasma samples from Gambian children with severe malaria. We compared the proteomic profiles of different severe malaria syndromes and generated hypotheses regarding the underlying disease mechanisms. Results/Conclusions- The main challenges of studying the severe malaria syndromes using proteomics were the high complexity and variability among the samples. We hypothesized that hepatic injury and nitric oxide play roles in the pathophysiology of cerebral malaria and respiratory distress.

Page generated in 0.0271 seconds