• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 181
  • 8
  • Tagged with
  • 189
  • 184
  • 84
  • 79
  • 44
  • 44
  • 38
  • 38
  • 29
  • 27
  • 21
  • 19
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Safety and Efficacy Modelling in Anti-Diabetic Drug Development

Hamrén, Bengt January 2008 (has links)
<p>A central aim in drug development is to ensure that the new drug is efficacious and safe in the intended patient population.</p><p>Mathematical models describing the pharmacokinetic-pharmacodynamic (PK-PD) properties of a drug are valuable to increase the knowledge about drug effects and disease and can be used to inform decisions. The aim of this thesis was to develop mechanism-based PK-PD-disease models for important safety and efficacy biomarkers used in anti-diabetic drug development. </p><p>Population PK, PK-PD and disease models were developed, based on data from clinical studies in subjects with varying degrees of renal function, non-diabetic subjects with insulin resistance and patients with type 2 diabetes mellitus (T2DM), receiving a peroxisome proliferator-activated receptor (PPAR) α/γ agonist, tesaglitazar.</p><p>The PK model showed that a decreased renal elimination of the metabolite in renally impaired subjects leads to increased levels of metabolite undergoing interconversion and subsequent accumulation of tesaglitazar. Tesaglitazar negatively affects the glomerular filtration rate (GFR), and since renal function affects tesaglitazar exposure, a PK-PD model was developed to simultaneously describe this interrelationship. The model and data showed that all patients had decreases in GFR, which were reversible when discontinuing treatment. </p><p>The PK-PD model described the interplay between fasting plasma glucose (FPG), glycosylated haemoglobin (HbA1c) and haemoglobin in T2DM patients. It provided a mechanistically plausible description of the release and aging of red blood cells (RBC), and the glucose dependent glycosylation of RBC to HbA1c. The PK-PD model for FPG and fasting insulin, incorporating components for β-cell mass, insulin sensitivity and impact of disease and drug treatment, realistically described the complex glucose homeostasis in the heterogeneous patient population. </p><p>The mechanism-based PK, PK-PD and disease models increase the understanding about T2DM and important biomarkers, and can be used to improve decision making in the development of future anti-diabetic drugs. </p>
122

Process-induced disorder of pharmaceutical materials : Mechanisms and quantification of disorder

Pazesh, Samaneh January 2017 (has links)
One of the most important prerequisites in the drug development is to attain a reproducible and robust product in terms of its nature, and its chemical and physical properties. This can be challenging, since the crystalline form of drugs and excipients can be directly transformed into the amorphous one during normal pharmaceutical processing, referred to as process-induced amorphisation or process-induced disorder. The intention of this thesis was to address the mechanisms causing disorder during powder flow and milling and, in association with this, to evaluate, the ability of Raman spectroscopy and atomic force microscopy (AFM) to quantify and characterize process-induced disorder. The amorphisation mechanisms were controlled by stress energy distribution during processing, which in turn was regulated by a series of process parameters. Compression and shearing stress caused by sliding were stress types that acted on the particles during powder flow and ball milling process. However, sliding was the most important inter-particulate contact process giving rise to amorphisation and the transformation was proposed to be caused by vitrification. The plastic stiffness and elastic stiffness of the milling-induced particles were similar to a two-state particle model, however the moisture sorption characteristics of these particles were different. Thus the milled particles could not be described solely by a two-state particle model with amorphous and crystalline domains.  Raman spectroscopy proved to be an appropriate and effective technique in the quantification of the apparent amorphous content of milled lactose powder. The disordered content below 1% could be quantified with Raman spectroscopy. AFM was a useful approach to characterize disorder on the particle surfaces. In summary, this thesis has provided insight into the mechanisms involved in process-induced amorphisation of pharmaceutical powders and presented new approaches for quantification and characterization of disordered content by Raman spectroscopy and atomic force microscopy.
123

Anabolic Androgenic Steroids and the Brain : Studies of Neurochemical and Behavioural Changes Using an Animal Model

Steensland, Pia January 2001 (has links)
<p>A new group of anabolic androgenic steroid (AAS) users has developed during the last two decades. This group consists primarily of young men interested in improving their physical appearance. Within this group, AAS are sometimes used together with other illicit drugs, alcohol and nicotine. Brutal and violent crimes have been committed under the influence of AAS, possibly because of AAS psychiatric side effects, ranging from increased aggression and psychosis to depression. Unfortunately, the biochemical mechanisms behind these effects are poorly understood.</p><p>In this thesis we used an animal model to study biochemical and behavioural effects of chronic AAS treatment (15 mg/kg/day of nandrolone decanoate for 14 days). The effect on the endogenous opioid peptides and the expression of immediate-early gene protein Fos in various brain regions were studied using radioimmunoassay and immunohistochemistry, respectively. In addition, we studied AAS effect on voluntary alcohol consumption and defensive behaviours, including aggression. The results show that AAS enhance endogenous opioid activity and Fos expression in brain regions regulating reward, aggression and disinhibitory behaviours. An imbalance between two opioid systems with generally opposing effects, the enkephalins with euphoric and the dynorphins with dysphoric effects, was also found. This implies that AAS alter the ability to maintain a stable state of mind and the response to other drugs of abuse. The AAS pre-treated animals enhanced their alcohol intake, were more aggressive and showed lower fleeing and freezing reaction than the controls. In addition, AAS enhanced amphetamine-induced aggression when the amphetamine was given three weeks after the last AAS injection.</p><p>The behavioural and biochemical results found in this thesis, support the hypothesis that use of AAS might lead to the development of dependence and may induce changes in the brain leading to disinhibitory behaviours.</p>
124

Chiral Separation of Amines by Non-Aqueous Capillary Electrophoresis using Low Molecular Weight Selectors

Hedeland, Ylva January 2006 (has links)
<p>Three chiral selectors (diketogulonic acid, benzoxycarbonylglycylproline and ketopinic acid) have been introduced for enantioseparation of pharmacologically active amines in non-aqueous capillary electrophoresis. The use of organic solvents, instead of aqueous buffers in the background electrolyte facilitated ion-pair formation between the analytes and the chiral selectors. The enantioresolution was strongly affected by the choice of selector and organic solvent but also depended on the other electrolytes. The most important parameter for the enantioresolution, apart from the choice of chiral selector, was the direction and magnitude of the electro-osmosis. Thus, covalently coated capillaries were used to suppress and to reverse this flow. Furthermore, the alkali metal hydroxide added to the background electrolyte had a great influence on the electro-osmosis. Exchanging LiOH for NaOH, was found to decrease the electro-osmotic flow. Interestingly, the flow was altered from cathodic to anodic, with KOH, RbOH or CsOH added to the ethanolic BGE. The occurrence of a reversed electro-osmosis had a great positive effect on the enantioresolution. An appropriate choice of solvent and electrolytes promoted also fast chiral separations, e.g., the enantiomers of isoprenaline were resolved within one minute. </p><p>The capillary electrophoresis systems developed within this work were applied for enantiomeric purity determinations of different pharmaceutical forms of drug products. A detection limit of 0.033 % was achieved for <i>1S,2R</i>-ephedrine, the enantiomeric impurity in Efedrin®, when diketogulonic acid was used as the selector. </p><p>By using the pre-concentration technique, transient isotachophoresis, the peak efficiency was enhanced for the enantiomers of timolol. This facilitated the introduction of a higher concentration of the sample into the capillary electrophoretic system containing ketopinic acid as the selector, and lowered the detection limit from 2.5 % to 0.2 % for the enantiomeric impurity <i>R</i>-timolol compared with injection without transient isotachophoresis.</p><p>The volatility of the non-aqueous media in capillary electrophoresis facilitated the hyphenation to mass spectrometry. The partial filling technique ensured that the selector did not contaminate the mass spectrometer, and the separated enantiomers of e.g., pronethalol were detected in the selector-free zone. </p>
125

Direct Thrombin Inhibitors in Treatment and Prevention of Venous Thromboembolism: Dose – Concentration – Response Relationships

Cullberg, Marie January 2006 (has links)
<p>For prevention and treatment of thrombotic diseases with an anticoagulant drug it is important that an adequate dose is given to avoid occurrence or recurrence of thrombosis, without increasing the risk of bleeding and other adverse events to unacceptable levels. The aim of this thesis was to develop mathematical models that describe the dose-concentration (pharmacokinetic) and concentration-response (pharmacodynamic) relationships of direct thrombin inhibitors, in order to estimate optimal dosages for treatment and long-term secondary prevention of venous thromboembolism (VTE).</p><p>Population pharmacokinetic-pharmacodynamic models were developed, based on data from clinical investigations in healthy volunteers and patients receiving intravenous inogatran, subcutaneous melagatran and/or its oral prodrug ximelagatran. The benefit-risk profiles of different ximelagatran dosages were estimated using clinical utility functions. These functions were based on the probabilities and fatal consequences of thrombosis, bleeding and elevation of the hepatic enzyme alanine aminotransferase (ALAT).</p><p>The studies demonstrate that the pharmacokinetics of melagatran and ximelagatran were predictable and well correlated to renal function. The coagulation marker, activated partial thromboplastin time (APTT), increased non-linearly with increasing thrombin inhibitor plasma concentration. Overall, the systemic melagatran exposure (AUC) and APTT were similarly predictive of thrombosis and bleedings. The identified relationship between the risk of ALAT-elevation and melagatran AUC suggests that the incidence approaches a maximum at high exposures. The estimated clinical utility was favourable compared to placebo in the overall study population and in special subgroups of patients following fixed dosing of ximelagatran for long-term secondary prevention of VTE. Individualized dosing was predicted to add limited clinical benefit in this indication.</p><p>The models developed can be used to support the studied dosage and for selection of alternative dosing strategies that may improve the clinical outcome of ximelagatran treatment. In addition, the models may be extrapolated to aid the dose selection in clinical trials with other direct thrombin inhibitors.</p>
126

Computational Modeling of the AT<sub>2</sub> Receptor and AT<sub>2</sub> Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models

Sköld, Christian January 2007 (has links)
<p>Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT<sub>2</sub> receptor.</p><p>The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT<sub>2</sub> receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan.</p><p>To further examine ligand binding, a 3D model of the AT<sub>2</sub> receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT<sub>2</sub> receptor.</p><p>By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT<sub>2</sub> receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT<sub>1</sub> and AT<sub>2</sub> receptor affinity as well as selectivity were derived. </p>
127

Neurosteroids Induce Allosteric Effects on the NMDA Receptor : Nanomolar Concentrations of Neurosteroids Exert Non-Genomic Effects on the NMDA Receptor Complex

Johansson, Tobias January 2008 (has links)
<p>The neurosteroids constitute a group of powerful hormones synthesized and acting in the central nervous system. They participate in a number of important central processes, such as memory and learning, mood and neuroprotection. Their effects emerge from rapid interactions with membrane bound receptors, such as the N-methyl-D-aspartate (NMDA) receptor, the gamma-amino-butyric acid receptor and the sigma 1 receptor. The mechanisms of action are separate from classical genomic interactions. </p><p>The aims of this thesis were to identify and characterize the molecular mechanisms underlying the effects of nanomolar concentrations of neurosteroids at the NMDA receptor. </p><p>The results show that the neurosteroids pregnenolone sulfate (PS) and pregnanolone sulfate 3α5βS) differently modulate the NMDA receptor, changing the kinetics for the NMDA receptor antagonist ifenprodil, through unique and separate targets at the NR2B subunit. The effects that appear to be temperature independent were further confirmed in a calcium imagining functional assay. A second functional study demonstrated that PS and 3α5βS affect glutamate-stimulated neurite outgrowth in NG108-15 cells. </p><p>Misuse of anabolic androgenic steroids (AAS) has powerful effects on emotional states. Since neurosteroids regulate processes involved in mood it can be hypothesised that AAS can interact with the action of neurosteroids in the brain. However, chronic administration of the AAS nandrolone decanoate did not alter the allosteric effects of PS or 3α5βS at the NMDA receptor, but changed the affinity for PS, 3α5βS and dehydroepiandrosterone sulfate to the sigma 1 receptor. The results also showed that the neurosteroids displace <sup>3</sup>H-ifenprodil from the sigma 1 and 2 receptors without directly sharing the binding site for <sup>3</sup>H-ifenprodil at the sigma 1 receptor. The decreased affinity for the neurosteroids at the sigma 1 receptor may be involved in the depressive symptoms associated with AAS misuse.</p><p>The NMDA receptor system is deeply involved in neurodegeneration and the NMDA receptor antagonist ifenprodil exert neuroprotective actions. The findings that neurosteroids interact with ifenprodil at the NMDA receptor may be an opportunity to obtain synergistic effects in neuroprotective treatment.</p>
128

Blood-Brain Barrier Transport : Investigation of Active Efflux using Positron Emission Tomography and Modelling Studies

Syvänen, Stina January 2008 (has links)
<p>This thesis examines the transport of exogenous molecules across the blood-brain barrier (BBB), focusing on active efflux, using positron emission tomography (PET), computer simulation and modelling. P-glycoprotein (P-gp) inhibition was studied using [<sup>11</sup>C]verapamil and [<sup>11</sup>C]hydroxyurea was investigated as a new marker for active efflux transport. Simulations were carried out to explore the importance of the efflux transporter location in the BBB. Brain concentrations of [<sup>11</sup>C]verapamil, [<sup>11</sup>C]GR205171 and [<sup>18</sup>F]altanserin were compared in various laboratory animal species and in humans.</p><p>A central aspect of the studies has been the novel combination of dynamic PET imaging of the brain pharmacokinetics of a labelled drug, administered through an exponential infusion scheme allowing time-resolved consequence analysis of P-gp inhibition, and mathematical modelling of the obtained data. The methods are applicable to drugs under development and can be used not only in rodents but also in higher species, potentially even in humans, to investigate the effects of P-gp or other transporters on drug uptake in the brain.</p><p>The inhibition of P-gp by cyclosporin A (CsA) and the subsequent change in brain concentrations of [<sup>11</sup>C]verapamil occurred rapidly in the sense that [<sup>11</sup>C]verapamil uptake increased rapidly after CsA administration but also in the sense that the increased uptake was rapidly reversible. The P-gp inhibition was best described by an inhibitory indirect effect model in which CsA decreased the transport of [<sup>11</sup>C]verapamil out of the brain. The model indicated that approximately 90% of the transport of [<sup>11</sup>C]verapamil was P-gp-mediated. The low brain concentrations of [<sup>11</sup>C]hydroxyurea appeared to be a result of slow transport across the BBB rather than active efflux. This exemplifies why the extent and the rate of brain uptake should be approached as two separate phenomena. The brain-to-plasma concentration ratios for the three studied radiotracers differed about 10-fold be-tween species, with lower concentrations in rodents than in humans, monkeys and pigs. The increase in brain concentrations after P-gp inhibition was somewhat greater in rats than in the other species. </p><p>The findings demonstrate a need to include the dynamics of efflux inhibition in the experimental design and stress the importance of the choice of species in preclinical studies of new drug candidates. </p>
129

Chiral Separation of Amines by Non-Aqueous Capillary Electrophoresis using Low Molecular Weight Selectors

Hedeland, Ylva January 2006 (has links)
Three chiral selectors (diketogulonic acid, benzoxycarbonylglycylproline and ketopinic acid) have been introduced for enantioseparation of pharmacologically active amines in non-aqueous capillary electrophoresis. The use of organic solvents, instead of aqueous buffers in the background electrolyte facilitated ion-pair formation between the analytes and the chiral selectors. The enantioresolution was strongly affected by the choice of selector and organic solvent but also depended on the other electrolytes. The most important parameter for the enantioresolution, apart from the choice of chiral selector, was the direction and magnitude of the electro-osmosis. Thus, covalently coated capillaries were used to suppress and to reverse this flow. Furthermore, the alkali metal hydroxide added to the background electrolyte had a great influence on the electro-osmosis. Exchanging LiOH for NaOH, was found to decrease the electro-osmotic flow. Interestingly, the flow was altered from cathodic to anodic, with KOH, RbOH or CsOH added to the ethanolic BGE. The occurrence of a reversed electro-osmosis had a great positive effect on the enantioresolution. An appropriate choice of solvent and electrolytes promoted also fast chiral separations, e.g., the enantiomers of isoprenaline were resolved within one minute. The capillary electrophoresis systems developed within this work were applied for enantiomeric purity determinations of different pharmaceutical forms of drug products. A detection limit of 0.033 % was achieved for 1S,2R-ephedrine, the enantiomeric impurity in Efedrin®, when diketogulonic acid was used as the selector. By using the pre-concentration technique, transient isotachophoresis, the peak efficiency was enhanced for the enantiomers of timolol. This facilitated the introduction of a higher concentration of the sample into the capillary electrophoretic system containing ketopinic acid as the selector, and lowered the detection limit from 2.5 % to 0.2 % for the enantiomeric impurity R-timolol compared with injection without transient isotachophoresis. The volatility of the non-aqueous media in capillary electrophoresis facilitated the hyphenation to mass spectrometry. The partial filling technique ensured that the selector did not contaminate the mass spectrometer, and the separated enantiomers of e.g., pronethalol were detected in the selector-free zone.
130

Computational Modeling of the AT2 Receptor and AT2 Receptor Ligands : Investigating Ligand Binding, Structure–Activity Relationships, and Receptor-Bound Models

Sköld, Christian January 2007 (has links)
Rational conversion of biologically active peptides to nonpeptide compounds with retained activity is an appealing approach in drug development. One important objective of the work presented in this thesis was to use computational modeling to aid in such a conversion of the peptide angiotensin II (Ang II, Asp-Arg-Val-Tyr-Ile-His-Pro-Phe). An equally important objective was to gain an understanding of the requirements for ligand binding to the Ang II receptors, with a focus on interactions with the AT2 receptor. The bioactive conformation of a peptide can provide important guidance in peptidomimetic design. By designing and introducing well-defined secondary structure mimetics into Ang II the bioactive conformation can be addressed. In this work, both γ- and β-turn mimetic scaffolds have been designed and characterized for incorporation into Ang II. Using conformational analysis and the pharmacophore recognition method DISCO, a model was derived of the binding mode of the pseudopeptide Ang II analogues. This model indicated that the positioning of the Arg side chain was important for AT2 receptor binding, which was also supported when the structure–activity relationship of Ang II was investigated by performing a glycine scan. To further examine ligand binding, a 3D model of the AT2 receptor was constructed employing homology modeling. Using this receptor model in a docking study of the ligands, binding modes were identified that were in agreement with data from point-mutation studies of the AT2 receptor. By investigating truncated Ang II analogues, small pseudopeptides were developed that were structurally similar to nonpeptide AT2 receptor ligands. For further guidance in ligand design of nonpeptide compounds, three-dimensional quantitative structure–activity relationship models for AT1 and AT2 receptor affinity as well as selectivity were derived.

Page generated in 0.0633 seconds