• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • Tagged with
  • 30
  • 30
  • 17
  • 11
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modeling and assessment of flow and transport in the Hueco Bolson, a transboundary groundwater system: the El Paso / Cuidad Juarez case

Nwaneshiudu, Okechukwu 15 May 2009 (has links)
Potential contamination from hazardous and solid waste landfills stemming from population increase, rapid industrialization, and the proliferation of assembly plants known as the maquiladoras, are of major concern in the U.S.-Mexican border area. Additionally, historical, current, and future stresses on the Hueco Bolson alluvial aquifer in the El Paso/Ciudad Juarez area due to excessive groundwater withdrawal can affect contaminant migration in the area. In the current study, an updated and improved threedimensional numerical groundwater flow and transport model is developed using a current Hueco Bolson groundwater availability model as its basis. The model with contaminant transport is required to access and characterize the extent of vulnerability of the aquifer to potential contamination from landfills in the El Paso/Ciudad Juarez border area. The model developed in this study is very capable of serving as the basis of future studies for water availability, water quality, and contamination assessments in the Hueco Bolson. The implementation of fate and transport modeling and the incorporation of the Visual MODFLOW® pre and post processor, requiring MODFLOW 2000 data conversion, enabled significant enhancements to the numerical modeling and computing capabilities for the Hueco Bolson. The model in the current research was also developed by employing MT3DMS©, ZONEBUDGET, and Visual PEST® for automated calibrations. Simulation results found that the Hueco Bolson released more water from storage than the aquifer was being recharged in response to increased pumping to supply the growing border area population. Hence, significant head drops and high levels of drawdown were observed in the El Paso/Ciudad Juarez area. Predictive simulations were completed representing scenarios of potential contamination from the border area sites. Fate and transport results were most sensitive to hydraulic conductivities, flow velocities, and directions at the sites. Sites that were located within the vicinity of the El Paso Valley and the Rio Grande River, where head differences and permeabilities were significant, exhibited the highest potentials for contaminant migration.
22

Sensitivity and uncertainty analyses of contaminant fate and transport in a field-scale subsurface system

Wang, Jinjun 31 March 2008 (has links)
Health scientists often rely on simulation models to reconstruct groundwater contaminant exposure data for retrospective epidemiologic studies. Due to the nature of historical reconstruction process, there are inevitably uncertainties associated with the input data and, therefore, with the final results of the simulation models, potentially adversely impacting related epidemiologic investigations. This study examines the uncertainties associated with the historically reconstructed contaminant fate and transport simulations for an epidemiologic study conducted at U.S. Marine Corps Base Camp Lejeune, North Carolina. To achieve an efficient uncertainty analysis, sensitivity analysis was first conducted to identify the critical uncertain variables, which were then adopted in the uncertainty analysis using an improved Monte Carlo simulation (MCS) method. Particularly, uncertainties associated with the historical contaminant arrival time were evaluated. To quantify the uncertainties in an efficient manner, a procedure identified as Pumping Schedule Optimization System (PSOpS) was developed to obtain the extreme (i.e., earliest and latest) contaminant arrival times caused by pumping schedule variations. Two improved nonlinear programming methods Rank-and-Assign (RAA) and Improved Gradient (IG) are used in PSOpS to provide computational efficiency. Furthermore, a quantitative procedure named Pareto Dominance based Critical Realization Identification (PDCRI) was developed to screen out critical realizations for contaminant transport in subsurface system, so that the extreme contaminant arrival times under multi-parameter uncertainties could be evaluated efficiently.
23

An Analysis of the Fate and Transport of Nutrients in the Upper and Lower Scioto Watersheds of Ohio

Allen, Gerald R. 13 September 2011 (has links)
No description available.
24

Floodplain Hydrology and Biogeochemistry

Jones, Charles Nathaniel 04 September 2015 (has links)
River-floodplain connectivity is defined as the water mediated transfer of materials and energy between a river or stream and its adjacent floodplain. It is generally accepted that restoring and/or enhancing river-floodplain connectivity can reduce the downstream flux of reactive solutes such as nitrogen (N) and phosphorus (P) and thus improve downstream water quality. However, there is little scientific literature to guide ecological engineering efforts which optimize river-floodplain connectivity for solute retention. Therefore, the aim of my dissertation research was to examine feedbacks between inundation hydrology and floodplain biogeochemistry, with an emphasis on analyzing variation experienced along the river continuum and the cumulative effects of river-floodplain connectivity at the basin scale. This was completed through four independent investigations. Field sites ranged from the Atchafalaya River Basin, the largest river-floodplain system in the continental US, to the floodplain of a recently restored headwater stream in Appalachia. We also developed a method to examine river-floodplain connectivity across large- river networks and applied that methodology to US stream network. Largely, our results highlight the role floodwater residence time distributions play in floodplain biogeochemistry. In headwater streams, residence times restrict redox dependent processes (e.g. denitrification) and downstream flushing of reactive solutes is the dominant process. However, in large-river floodplains, redox dependent processes can become solute limited because of prolonged residence times and hydrologic isolation. In these floodplains, the dominant process is often autochthonous solute accumulation. Further, results from our modeling study suggest large-river floodplains have a greater impact on downstream water quality than floodplains associated with smaller streams, even when considering cumulative effects across the entire river network. / Ph. D.
25

Factors influencing the uptake and fate of metallic nanoparticles in filter-feeding bivalves

Hull, Matthew S. 22 September 2011 (has links)
Metallic nanoparticles (MetNPs) with unique nanoscale properties, including novel optical behavior and superparamagnetism, are continually being developed for biomedical and industrial applications. In certain biomedical applications where extended blood half-lives are required, MetNPs are surface-functionalized using polymers, proteins, and other stabilizing agents to facilitate their resistance to salt-induced aggregation. Given their colloidal stability in high ionic-strength matrices, functionalized MetNPs are anticipated to be persistent aquatic contaminants. Despite their potential environmental significance, the persistence of surface- functionalized MetNPs as individually-stabilized nanoparticles in aquatic environments is largely unknown. Further, few studies have investigated the fundamental factors that influence MetNP uptake and fate/transport processes in ecologically susceptible aquatic biota, such as filter- feeding bivalves, which ingest and accumulate a broad range of dissolved- and particulate-phase contaminants. The present study describes a comprehensive approach to prepare and rigorously characterize MetNP test suspensions to facilitate fundamental examinations of nanoparticle uptake and fate/transport processes in freshwater and marine bivalves. We demonstrate the importance of accurately characterizing test suspensions in order to better understand MetNP persistence as individually-stabilized nanoparticles within aquatic test media, and define an optical-activity metric suitable for quantifying and comparing the persistence of variable MetNP formulations as National Nanotechnology Initiative (NNI) definable nanoscale materials. We also show that individually-stabilized MetNPs of variable elemental composition, particle diameter, and surface coating are accessible to bivalves in both freshwater and marine environments. Clearance rates for MetNPs are positively related to the diameter and initial concentration of MetNP suspensions. The observed size-dependence of particle filtration rates facilitates ‘size-selective biopurification' of particle suspensions with nanoscale resolution, and may have applicability in future sustainable nanomanufacturing processes. Filtered MetNPs are retained for extended periods post-exposure primarily within the bivalve digestive tract and digestive gland, but migration to other organ systems was not observed. Clusters of MetNPs were recovered in concentrated form from excreted feces, suggesting that biotransformation and biodeposition processes will play an important role in transferring MetNPs from the water column to benthic environments. / Ph. D.
26

HIGH RESOLUTION SENSING OF NITRATE DYNAMICS IN A MIXED-USE APPALACHIAN WATERSHED: QUANTIFYING NITRATE FATE AND TRANSPORT AS INFLUENCED BY A BACKWATER RIPARIAN WETLAND

Jensen, Alexandria Kosoma 01 January 2018 (has links)
As harmful algal blooms begin to appear in unexpected places such as rivers in predominantly forested systems, a better understanding of the nutrient processes within these contributing watersheds is necessary. However, these systems remain understudied. Utilization of high-resolution water quality data applied to deterministic numerical modeling has shown that a 0.42% watershed area backwater riparian wetland along the Ohio River floodplain can attenuate 18.1% of nitrate discharged from local mixed-use watersheds and improves in performance during high loading times due to coinciding increased hydrological connectivity and residence times of water in these wetlands. Loading from the Fourpole Creek watershed was typical for mixed-use systems at 3.3 kgN/ha/yr. The high-resolution data were used to improve boundary condition parameterization, elucidate shortcomings in the model structure, and reduce posterior solution uncertainty. Using high resolution data to explicitly inform the modeling process is infrequently applied in the literature. Use of these data significantly improves the modeling process, parameterization, and reduces uncertainty in a way that would not have been possible with a traditional grab sampling approach.
27

Assessing the Impacts of Unrestricted Pesticide Use in Small-Scale Agriculture on Water Quality and Associated Human Health and Ecological Implications in an Indigenous Village in Rural Panam[aacute]

Watson, Sarah Louise 01 May 2014 (has links)
In 2014, the global pesticide industry's projected worth is $52 billion and by 2020, the developing world will make up one-third of the world's chemical production and consumption. Pesticides can have unintended negative consequences for human health and the environment, especially in the developing world where regulations are loose or nonexistent. One country with unrestricted use of pesticides is Panam[aacute], especially in Santa Rosa de Cucunatí. In this indigenous village, small-scale farmers and ranchers spray paraquat, glyphosate, picloram, and 2,4-D at higher elevations than the spring water source of a gravity-fed water system, the river, and the village. The objective of this study was to estimate the concentration of these pesticides in the water system and the river and to perform a human health and ecological risk assessment. Pesticide fate and transport models in the graphical user interface EXAMS-PRZMS Exposure Simulation Shell (EXPRESS), which was developed by the United States Environmental Protection Agency, were used to predict concentrations of the four mentioned pesticides in drinking water and the river using chemical properties, data from Food and Agriculture Organization and Smithsonian Tropical Research Institute, and the author's experience as a Peace Corps Volunteer. The results from Tier I model FQPA Index Reservoir Screening Tool (FIRST) were used to compare immediate and delayed rain events, noting minimal difference. The Tier II PRZM-EXAMS shell provided estimated drinking water concentration (EDWC) profiles. The paraquat profile was much lower than picloram, glyphosate, and 2,4-D, which had almost identical profiles with peak concentrations around 12 ppm and the average annual concentration 100 ppb. Average Daily Dose (ADD) via drinking water was calculated for men, women, and children using model results and compared to the oral reference dose (RfD). ADDs only exceeded the RfD with maximum peak EDWCs, implying low risk. However, RfD was used to calculate a breakpoint concentration, the concentration at which each pesticide presents a risk to the consumer. This was then compared to the maximum peak (highest, i.e. worst-case scenario) and annual (lowest, i.e. best-case scenario) EDWC profiles. In the best-case scenario, glyphosate and picloram did not pose a threat, paraquat posed a moderate threat and 2,4-D posed a high threat, with the concentration exceeding the breakpoint for 90 percent of the years. With respect to the worst-case scenario, all four chemicals posed high threats to the consumer. Individual exposure via consumption of fish from the river was calculated using a calculated bioconcentration (BCF) factor and calculated breakpoint concentrations. For the best case scenario, picloram presented a low risk and 2,4-D presented a high risk but for the worst case, both of these chemicals presented a very high risk. An additive exposure of these two human health pathways found that for the best case scenario, exposure from most of the four chemicals did not approach the RfD. However, for the worst-case scenario the exposures were significantly higher than the oral RfD--therefore, between the lowest and the highest concentrations, the general population is at risk. For the ecological risk assessment, the 96-hour peak profile was compared to the 96-hour lethal dose (LD50); glyphosate posed a high risk to fathead minnows and low risk to bluegills and 2,4-D presented a high risk to fathead minnows, low risk to channel catfish, and very high risk to bluegills. A more general risk assessment compared maximum peak and annual concentrations to the US EPA's aquatic life benchmarks. Glyphosate presented no threat and 2,4-D only presented a threat to plants. For picloram, fish were at very high risk at the chronic level and low risk at the acute level, and plants were at moderate risk. Paraquat presented the most significant threat to aquatic life, exceeding benchmarks for all plants and invertebrates at the chronic level 100 percent of the time. It presented no threat to fish in the best-case scenario, but a high risk for fish at the chronic level in the worst case scenario, as well as very high risk for all invertebrates and plants. Improvements in application and watershed protection as part of a multi-disciplinary approach are proposed in place of technological mitigation strategies. Recommendations for future studies include the development of a developing-world context model and experimental studies in the developing world to compare to model results, where possible.
28

Mapping dynamic exposure: constructing GIS models of spatiotemporal heterogeneity in artificial stream systems

Weighman, Kristi Kay 07 May 2019 (has links)
No description available.
29

Designing Smarter Stormwater Systems at Multiple Scales with Transit Time Distribution Theory and Real-Time Control

Parker, Emily Ann 17 June 2021 (has links)
Urban stormwater runoff is both an environmental threat and a valuable water resource. This dissertation explores the use of two stormwater management strategies, namely green stormwater infrastructure and stormwater real-time control (RTC), for capturing and treating urban stormwater runoff. Chapter 2 focuses on clean bed filtration theory and its application to fecal indicator bacteria removal in experimental laboratory-scale biofilters. This analysis is a significant step forward in our understanding of how physicochemical theories can be melded with hydrology, engineering design, and ecology to improve the water quality benefits of green infrastructure. Chapter 3 focuses on the novel application of unsteady transit time distribution (TTD) theory to solute transport in a field-scale biofilter. TTD theory closely reproduces experimental bromide breakthrough concentrations, provided that lateral exchange with the surrounding soil is accounted for. TTD theory also provides insight into how changing distributions of water age in biofilter storage and outflow affect key stormwater management endpoints, such as biofilter pollutant treatment credit. Chapter 4 focuses on stormwater RTC and its potential for improving runoff capture and water supply in areas with Mediterranean climates. We find that the addition of RTC increases the percent of runoff captured, but does not increase the percent of water demand satisfied. Our results suggest that stormwater RTC systems need to be implemented in conjunction with context-specific solutions (such as spreading basins for groundwater recharge) to reliably augment urban water supply in areas with uneven precipitation. Through a combination of modeling and experimental studies at a range of scales, this dissertation lays the foundation for future integration of TTD theory with RTC to improve regional stormwater management. / Doctor of Philosophy / Urban stormwater runoff contains a variety of pollutants. Conventional storm drain systems are designed to move stormwater as quickly as possible away from cities, delivering polluted runoff to local streams, rivers, and the coastal ocean – and discarding a valuable freshwater resource. By contrast, green stormwater infrastructure captures and retains stormwater as close as possible to where the rain falls. Green stormwater infrastructure can also help remove pollutants from stormwater through physical, chemical, and biological treatment processes. This dissertation describes two modeling approaches for understanding and predicting pollutant removal processes in green stormwater infrastructure (Chapters 2 and 3). Chapter 4 explores the implementation of smart stormwater systems, which use automated controllers and sensors to adaptively address stormwater management challenges. Through a combination of modeling and experimental studies at a range of scales, this dissertation lays the foundation for future improvements to regional stormwater management.
30

Implications of Shape Factors on Fate, Uptake, and Nanotoxicity of Gold Nanomaterials

Abtahi, Seyyed Mohammad Hossein 28 June 2018 (has links)
Noble metal nanoparticles such as gold and silver are of interest because of the unique electro-optical properties (e.g., localized surface plasmon resonance [LSPR]) that originate from the collective behavior of their surface electrons. These nanoparticles are commonly developed and used for biomedical and industrial application. A recent report has predicted that the global market for gold nanoparticles will be over 12.7 tons by year 2020. However, these surface-functionalized nanoparticles can be potential environmental persistent contaminants post-use due to their high colloidal stability in the aquatic systems. Despite, the environmental risks associated with these nanoparticles, just a few studies have investigated the effect of nanofeature factors such as size and shape on the overall fate/transport and organismal uptake of these nanomaterials in the aquatic matrices. This study presents a comprehensive approach to evaluate the colloidal stability, fate/transport, and organismal uptake of these nanoparticles while factoring in the size and shape related properties. We demonstrate the importance and effect of anisotropicity of a gold nanoparticle on the colloidal behavior and interaction with ecologically susceptible aquatic biota. We also show how readily available characterization techniques can be utilized to monitor and assess the fate/transport of this class of nanoparticles. We further describe and investigate the relationship between the aspect ratio (AR) of these elongated gold nanoparticles with clearance mechanisms and rates from the aquatic suspension columns including aggregation, deposition, and biopurification. We illustrate how a fresh water filter-feeder bivalve, Corbicula fluminea, can be used as a model organism to study the size and shape-selective biofiltration and nanotoxicity of elongated gold nanoparticles. The results suggest that biofiltration by C. fluminea increases with an increase in the size and AR of gold nanoparticle. We develop a simple nanotoxicity assay to investigate the short-term exposure nanotoxicity of gold nanoparticles to C. fluminea. The toxicity results indicate that for the tested concentration and exposure period that gold nanoparticles were not acutely toxic (i.e., not lethal). However, gold nanoparticles significantly inhibited the activities of some antioxidant enzymes in gill and digestive gland tissues. These inhibitions could directly affect the resistance of these organisms to a secondary stressor (temperature, pathogens, hypoxia etc.) and threaten organismal health. / Ph. D.

Page generated in 0.1131 seconds