21 |
Analýza spoje křídlo-trup letounu L 410 NG z hlediska filozofie konstrukce s přípustným poškozením / Damage tolerance analysis of wing to fuselage joint of L 410 NG airplaneDuchoň, Peter January 2014 (has links)
Master's thesis deals with the damage tolerance analysis of wing-to-fuselage joint of L 410 NG airplane. Thesis includes determination of the load distribution to the individual attachments of wing-to-fuselage joint, residual strength analysis and residual fatigue life analysis of the most loaded attachment lugs, calculation of fatigue crack growth curves in the attachment solids and inspection program proposal. This analysis was performed using FE model of the wing and central part of the fuselage and AFGROW software.
|
22 |
The Relationship Between High-Cycle Fatigue and Tensile Properties in Cast Aluminum AlloysOzdes, Huseyin 01 January 2016 (has links)
Cast aluminum alloys are common in automotive and aerospace applications due to their high strength-to-density ratio. Fracture data for cast aluminum alloys, such as fatigue life, tensile strength and elongation, are heavily affected by the structural defects, such as pores and bifilms. There have been numerous studies in which either fatigue performance or tensile deformation were characterized and linked to casting defects. However, a comprehensive study that correlates tensile and fatigue properties has not been reported. The present study is motivated to fill this gap. The main objective of the investigation is to analyze the link between tensile and fatigue performance of commonly used cast aluminum alloys, and determine whether fatigue performance of cast aluminum alloys can be predicted. To accomplish this task, four research questions were developed: (i) how well do equations developed to account for mean stress effects perform in cast aluminum alloys, especially in datasets with various levels of structural quality, (ii) is the strong correlation between fatigue life and structural quality index obtained from tensile data reported for A206 alloy castings applicable to other aerospace and automotive casting alloys, (iii) how do methods to estimate high cycle fatigue from tensile data perform with aluminum castings, and (iv) can the axial fatigue performance of an A356-T6 casting be predicted from rotating beam fatigue data. Among the three mean stress correction models analyzed by using seven datasets from the literature, the one developed by Walker with an adjustable exponent has provided the best fit. It has been hypothesized that the adjustable Walker parameter is related to the structural quality index, QT, estimated from tensile data. Results have shown that there is indeed a strong correlation between QT and the Walker parameter. Moreover the parameters of the xvi Weibull distribution estimated from corrected data have been found to be strongly influenced by the mean stress correction method used. Tensile and fatigue life data for 319, D357 and B201 aluminum alloy castings reported in the literature have been reanalyzed by using a maximum likelihood method to estimate Basquin parameters in datasets with run-outs, Weibull statistics for censored data and mean stress correction. After converting tensile data to QT, a distinct relationship has been observed between the expected fatigue life and mean quality index for all alloys. Moreover, probability of survival in fatigue life has been found to be directly linked to the proportions of the quality index distributions in two different regions, providing further evidence about the strong relationship between elongation, i.e., structural quality, and fatigue performance [1]. Specimen geometry has been found to make the largest difference whereas the two aerospace alloys, B201 and D357, with distinctly different microstructures, have followed the same relationship, reinforcing the findings in the literature that fatigue life in aluminum castings is mainly determined by the size distribution and number density of structural defects. Six methods to predict fatigue life from tensile data have been compared by using data from the literature as well as the experimental A356 data developed in this study. Results have shown that none of the six methods provide reliable results. The consistently poor performance of the methods developed for steels and wrought alloys can be attributed to the major structural defects, namely bifilms, in aluminum castings. A new method to estimate the S-N curve from tensile data have been developed by using data for seventy-one S-N curves have been collected and Basquin parameters have been determined. Analysis showed that there is a strong relationship between QT and the Basquin exponent. xvii The Basquin parameters estimated by using the empirical relationships developed in the present study have provided better fits to the same datasets tested for the six methods. Hence the model developed in this study is proposed as the most reliable method to estimate high cycle fatigue properties. Finally, three methods to convert rotating bending fatigue test results to uniaxial fatigue data have been investigated by using the data developed in this study. Results have indicated that the method developed by Esin, in which both the fatigue life and alternating stress are corrected, provide the best estimate. Analyses of fracture surfaces of broken specimens via scanning electron microscopy have shown that tensile, axial fatigue and rotating beam fatigue properties are all strongly influenced by the same structural defects, confirming the validity of the approach taken in this study.
|
23 |
Statistical Analysis and Bayesian Methods for Fatigue Life Prediction and Inverse Problems in Linear Time Dependent PDEs with UncertaintiesSawlan, Zaid A 10 November 2018 (has links)
This work employs statistical and Bayesian techniques to analyze mathematical forward models with several sources of uncertainty. The forward models usually arise from phenomenological and physical phenomena and are expressed through regression-based models or partial differential equations (PDEs) associated with uncertain parameters and input data. One of the critical challenges in real-world applications is to quantify uncertainties of the unknown parameters using observations. To this purpose, methods based on the likelihood function, and Bayesian techniques constitute the two main statistical inferential approaches considered here.
Two problems are studied in this thesis. The first problem is the prediction of fatigue life of metallic specimens. The second part is related to inverse problems in linear PDEs. Both problems require the inference of unknown parameters given certain measurements. We first estimate the parameters by means of the maximum likelihood approach. Next, we seek a more comprehensive Bayesian inference using analytical asymptotic approximations or computational techniques.
In the fatigue life prediction, there are several plausible probabilistic stress-lifetime (S-N) models. These models are calibrated given uniaxial fatigue experiments. To generate accurate fatigue life predictions, competing S-N models are ranked according to several classical information-based measures. A different set of predictive information criteria is then used to compare the candidate Bayesian models. Moreover, we propose a spatial stochastic model to generalize S-N models to fatigue crack initiation in general geometries. The model is based on a spatial Poisson process with an intensity function that combines the S-N curves with an averaged effective stress that is computed from the solution of the linear elasticity equations.
|
24 |
[en] ON THE IMPROVED AND THE OPTIMUM NOTCH SHAPE / [pt] ENTALHES MELHORADOS E OTIMIZADOSDANIEL DE ALBUQUERQUE SIMOES 22 March 2013 (has links)
[pt] A maioria dos componentes estruturais possui entalhes ou detalhes geométricos
de transição, tais como furos e ombros, que são necessários para montar
e/ou para operá-los. Estes entalhes aumentam localmente as tensões nominais que
atuariam em sua localização, caso eles não existissem. Efeitos da concentração de
tensão são importantes em muitos mecanismos de falha, como por exemplo, na iniciação
de trincas por fadiga. No entanto, os tradicionais raios circulares, usados
na maioria dos elementos estruturais para aliviar os efeitos da concentração de
tensão, não são os mais adequados para minimizá-los. Elementos estruturais naturais,
tais como galhos de árvores, depois de milhões de anos de evolução aprenderam
a usar raio de curvatura variável em vez do raio constante. Mas apesar deste
problema ter sido reconhecido há muito tempo, raios variáveis ainda não são muito
usados em projeto mecânico. A prática usual é especificar entalhes com os
maiores raios possíveis, uma vez que eles podem ser facilmente fabricados em
máquinas-ferramentas tradicionais. Entretanto, entalhes de raios variáveis corretamente
especificados podem ter fatores de concentração de tensão muito mais
baixos do que aqueles obtidos por raios constantes. Logo, eles podem ser uma boa
opção para aumentar a vida à fadiga, sem afetar significativamente as dimensões
globais e o peso dos componentes estruturais. Além disso, hoje em dia eles podem
ser facilmente fabricados com precisão, devido à disponibilidade de máquinasferramentas
CNC. Esta dissertação tem como objetivo quantificar a melhoria da
concentração de tensão que pode ser obtidas através de receitas tradicionais de
raios variáveis, e apresenta uma rotina numérica desenvolvida em ANSYS APDL
para otimizar geometria de entalhes tais como ombro de placas submetidas a tensão
ou flexão, placa com furo submetido a um campo biaxial de tensões e corpos
de prova de fadiga da ASTM. / [en] Most structural components have notches, or geometric transition details
such as holes and corners which are required to assemble and/or to operate them.
These notches locally increase the nominal stresses that would act in their location,
if they were not there. Stress concentration effects are very important in
many failure mechanisms, such as fatigue crack initiation. However, the usual
constant radius notch tip roots, used in most structural members to alleviate their
stress concentration effects, do not minimize them. In fact, natural structural
members, such as tree branches, after many million years of evolution have
learned to use variable tip radii instead of the fixed radius typical of engineering
notches. This problem has been recognized for a long time, but variable radii
notches optimized to minimize their deleterious influence on fatigue strength still
are not widely used in mechanical design. The usual practice is to specify notches
with as large as possible constant radius roots, since they can be easily fabricated
in traditional machine tools. However, notches with properly specified variable
radius can have much lower stress concentration factors than those obtainable by
fixed notch root radii. Therefore, such improved notches can be a good design option
to augment fatigue lives without significantly affecting structural components
global dimensions and weight. Moreover, these improved notches are certainly
more useful than ever, as nowadays they can be manufactured in many structural
components, due to the wide availability of CNC machine tools. This dissertation
aims to quantify the stress concentration improvements achievable by traditional
variable radii notches receipts, and presents a numerical routine, developed in
ANSYS APDL to optimize notch shapes of mechanical components such as
shoulders in plates subjected to tension or bending, plates with a hole subjected to
a biaxial stress field, and standard ASTM fatigue test specimens.
|
25 |
Very high cycle fatigue of high performance steelsKazymyrovych, Vitaliy January 2008 (has links)
<p>Many engineering components reach a finite fatigue life well above 10<sup>9 </sup>load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 10<sup>7</sup> load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 10<sup>7</sup> load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 10<sup>7</sup> load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles.</p><p> </p><p>One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions.</p><p>However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.</p><p> </p><p> </p>
|
26 |
Very high cycle fatigue of high performance steelsKazymyrovych, Vitaliy January 2008 (has links)
Many engineering components reach a finite fatigue life well above 109 load cycles. Some examples of such components are found in airplanes, automobiles or high speed trains. For some materials the fatigue failures have lately been found to occur well after 107 load cycles, namely in the Very High Cycle Fatigue (VHCF) range. This finding contradicted the established concept of fatigue limit for these materials, which postulates that having sustained 107 load cycles the material is capable of enduring an infinite number of cycles provided that the service conditions are unchanged. With the development of modern ultrasonic fatigue testing equipment it became possible to experimentally establish VHCF behaviour of various materials. For most of them the existence of the fatigue limit at 107 load cycles has been proved wrong and their fatigue strength continues to decrease with increasing number of load cycles. One important group of materials used for the production of high performance components subjected to the VHCF is tool steels. This study explores the VHCF phenomenon using experimental data of ultrasonic fatigue testing of some tool steel grades. The causes and mechanisms of VHCF failures are investigated by means of high resolution scanning electron microscopy, and in relation to the existing theories of fatigue crack initiation and growth. The main type of VHCF origins in steels are slag inclusions. However, other microstructural defects may also initiate fatigue failure. A particular attention is paid to the fatigue crack initiation, as it has been shown that in the VHCF range crack formation consumes the majority of the total fatigue life. Understanding the driving forces for the fatigue crack initiation is a key to improve properties of components used for very long service lives. Finite element modelling of VHCF testing was added as an additional perspective to the study by enabling calculation of local stresses at the fatigue initiating defects.
|
27 |
Fatigue And Fracture Analysis Of Helicopter Fuselage StructuresOzcan, Riza 01 February 2013 (has links) (PDF)
In this study a methodology is developed for the fatigue and fracture analysis of helicopter
fuselage structures, which are considered as the stiffened panels. The damage tolerance
behavior of the stiffened panels multiaxially loaded is investigated by implementing virtual
crack closure technique (VCCT). Validation of VCCT is done through comparison between
numerical analysis and the studies from literature, which consists of stiffened panels
uniaxially loaded and the panel with an inclined crack. A program based on Fortran
programming language is developed to automate the crack growth analysis under mixed
mode conditions. The program integrates the prediction of the change in crack propagation
direction by maximum circumferential stress criterion and the computation of energy release
rate by VCCT. It allows reducing the computation time for damage tolerance evaluation for
mixed mode cases through finite element analysis and runs the procedure file of
MSC.Marc/Mentat for numerical analysis and the program generated by Patran Command
Language (PCL) of MSC.Patran for remeshing. The developed code is verified by comparing
the crack growth trajectories obtained by numerical analysis with the experimental studies
from literature. A submodeling technique is utilized to analyze a particular fuselage portion of
helicopter tail boom. Effects of different skin/stringer configurations of the helicopter fuselage
structure on stress intensity factor are studied by means of the developed program. Fatigue
crack growth analysis is performed by using stress intensity factors obtained from numerical
analysis and fatigue propagation models proposed in literature.
|
28 |
Torsional Torques and Fatigue Life Expenditure for Large-Scale Steam Turbine-Generator Shafts and Blades Due to Power System HarmonicsTsai, Jong-ian 04 February 2004 (has links)
During the three decades, the torsional impact on turbine-generator sets due to power system disturbances has been extensively discussed in many research works. However, most of them are focused on the fatigue damage of turbine shafts due to large-signal disturbances. For example, network faults occur. Obviously, the torsional effect subject to small-signal disturbances has not received much attention. In fact, although the small disturbances would not immediately damage the turbine mechanism, the cumulative long-term damaging effects may not be negligible under certain circumstances.
Many operating conditions in power systems may lead to small disturbances on blades; for examples, shedding loads, switching transmission line, resetting control system parameters, and harmonics etc. Nevertheless, others only cause short-term or transient non-resonant disturbances occasionally except the power system subharmonics which could results in electro-mechanical resonance. Therefore, two types of subharmonics in power systems are proposed so as to investigate the toque impact and long-term fatigue life expenditure in turbine shafts and blades.
Firstly, from the steady-state disturbance viewpoint, the long-term cumulative fatigue estimation based on the three-year project of the GE Co. shows that there are potential damages for both the shafts and the blades of the nearby generators caused by the subharmonic excitations of the HVDC link. The fatigue life sensitivity works are also carried out to provide the recommendations for the safety operation. The optimal damper type and disposition scheme for depressing the resonant torque and prolonging the turbine lifetime is consequently motivated, which is based on participation factor of linear systems with the electromechanical analogy. The effectiveness of this scheme on suppressing vibration torque arising from network faults is also satisfying. In addition, the authors propose the new electromechanical supersynchronous resonance phenomenon for the turbine-generators near the inverter station owing to asymmetric line faults near the rectifier station.
Secondly, the dramatic real and reactive power consumption during the melting period of an electrical arc furnace load. The voltage flicker pollution is mainly caused by the reactive power fluctuation while the stochastic subsynchronous oscillation in turbine mechanism is excited by the electromagnetic torque of the subsynchronous frequency which is induced by the real power fluctuation. Such a small stress imposed on the low-pressure long turbine blade combined with its evitable corrosive environment contributing to the corrosion fatigue effect. Although the voltage flicker severity at the point of common coupling is still within the limit, the blade may have been damaged from the long-term corrosion fatigue life expenditure estimation. In other words, the conventional voltage flicker limit established to make human-eye comfortable might not protect the blade from damaging risk. The long-term influence resulted from the electric arc furnace loads cannot always be neglected. It is necessary to take care of the blade material intensity and operating environment. If there is the potential of blade damage, one has to strengthen the output capacity at the power plant or separate the peak load durations among the steel plants to limit the over-fluctuation real power of the generator.
|
29 |
Numerical And Experimental Investigation Of Fatigue Life In Deep Drawn PartsAytekin, Oguz 01 May 2005 (has links) (PDF)
Sheet metal forming has an important place among metal forming processes. As the usage of sheet metal increases, the fatigue simulation and optimization of these parts become more important. This thesis study examines the change of the fatigue life of a sheet metal part after forming. A sphere-like shape is deep drawn and change in thickness and residual stresses are analyzed. To understand the effect of residual stresses, deep drawn parts with and without residual stress tested against the fatigue failure. In parallel, the forming process is simulated with an implicit finite element method (FEM). The success of forming simulation is discussed in the study. Thickness changes and residual stresses calculated with FEM are included in computer aided fatigue analysis. The effect of thickness changes is examined with the results of FEM analysis. The effectiveness of the whole simulation process is discussed by comparing the outputs of experiments and computational analysis.
|
30 |
Inner Ring Fatigue Analysis Of Rolling Element BearingsEroglu, Baris 01 February 2009 (has links) (PDF)
Rolling element bearings are the one of the most widely used machine elements in
the industry. The most important criterion in bearing selection is the endurance life.
The first attempts on the prediction of the endurance life of rolling elements bearings
are done by Lundberg and Palmgren in 1950s (Harris, 1999). Their work adopted as
an ANSI, ABMA and ISO standard which is widely used in industry today. The
basic assumption of Lundberg-Palmgren formulation is that no matter how small the
load applied on rolling element bearing, all material in the stressed volume is subject
to fatigue failure.
In this study, four main life theories / Weibull, Lundberg-Palmgren, Ioannides-Harris,
and Zaretsky on rolling element bearings have been investigated. Three-dimensional
finite element models of a bearing&rsquo / s inner ring and rolling element have been
prepared. The stress fields within the inner ring and the ball with respect to the
applied load are obtained numerically. The fatigue life of the inner ring has been
predicted by two methods that are widely used for fatigue analysis / Total Life
Analysis (S-N method) and Crack Initiation Analysis (& / #56256 / & / #56624 / -N method). Obtained results
are compared with ISO formulation.
As a result of the investigation, S-N and & / #56256 / & / #56624 / -N methods are determined to give more
conservative results than ISO method for higher loads that cause stresses above the
fatigue limit of the material. The used methods for bearing life prediction recognize
the existence of the fatigue limit stress. Hence as the stresses within an operating
bearing do not exceed the limit stress, the bearing can achieve infinite life. It is also
observed that load variation has a direct influence on the bearing life. When the load
significantly changes from the levels which create stress above the fatigue limit to
the levels that result stress is below the fatigue limit, the bearing would have higher
endurance life than predicted by ISO method.
|
Page generated in 0.331 seconds