• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 19
  • 12
  • 6
  • 5
  • 5
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 140
  • 140
  • 35
  • 28
  • 27
  • 26
  • 25
  • 22
  • 20
  • 17
  • 17
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Reliability-based design optimization of composite wind turbine blades for fatigue life under wind load uncertainty

Hu, Weifei 01 July 2015 (has links)
The objectives of this study are (1) to develop an accurate and efficient fatigue analysis procedure that can be used in reliability analysis and reliability-based design optimization (RBDO) of composite wind turbine blades; (2) to develop a wind load uncertainty model that provides realistic uncertain wind load for the reliability analysis and the RBDO process; and (3) to obtain an optimal composite wind turbine blade that satisfies target reliability for durability under the uncertain wind load. The current research effort involves: (1) developing an aerodynamic analysis method that can effectively calculate detailed wind pressure on the blade surface for stress analysis; (2) developing a fatigue failure criterion that can cope with non-proportional multi-axial stress states in composite wind turbine blades; (3) developing a wind load uncertainty model that represents realistic uncertain wind load for fatigue reliability of wind turbine systems; (4) applying the wind load uncertainty model into a composite wind turbine blade and obtaining an RBDO optimum design that satisfies a target probability of failure for a lifespan of 20 years under wind load uncertainty. In blade fatigue analysis, resultant aerodynamic forces are usually applied at the aerodynamic centers of the airfoils of a blade to calculate stress/strain. However, in reality the wind pressures are applied on the blade surface. A wind turbine blade is often treated as a typical beam-like structure for which fatigue life calculations are limited in the edge-wise and/or flap-wise direction(s). Using the beam-like structure, existing fatigue analysis methods for composite wind turbine blades cannot cope with the non-proportional multi-axial stress states that are endured by wind turbine blades during operation. Therefore, it is desirable to develop a fatigue analysis procedure that utilizes detailed wind pressures as wind loads and considers non-proportional multi-axial stress states in fatigue damage calculation. In this study, a 10-minute wind field realization, determined by a 10-minute mean wind speed V10 and a 10-minute turbulence intensity I10, is first simulated using Veers’ method. The simulated wind field is used for aerodynamic analysis. An aerodynamic analysis method, which could efficiently generate detailed quasi-physical blade surface pressures, has been developed. The generated pressures are then applied on a high-fidelity 3-D finite element blade model for stress and fatigue analysis. The fatigue damage calculation considers the non-proportional multi-axial complex stress states. A detailed fatigue damage contour, which indicates the fatigue failure locally, can be obtained using the developed fatigue analysis procedure. As the 10-minute fatigue analysis procedure is deterministic in this study, the calculated 10-minute fatigue damage is determined by V10 and I10. It is necessary to clarify that the rotational speed of the wind turbine blade is assumed to be constant (12.1 rpm) and the pitch angle is fixed to be 0 degree for different wind conditions, since the rotational speed control and pitch angle control have not been considered in this study. For predicting the fatigue life of a wind turbine, a fixed Weibull distribution is widely used to determine the percentage of time the wind turbine experiences different mean wind speeds during its life-cycle. Meanwhile, fixed turbulence intensities are often used based on the designed wind turbine types. These simplifications, i.e., fixed Weibull distribution and fixed turbulence intensities, ignore the realistic uncertain wind load when designing a reliable wind turbine system. In the real world, both the mean wind speed and turbulence intensity vary constantly over one year, and their annual distributions are different at different locations and in different years. Thus, it is necessary to develop a wind load uncertainty model that can provide a realistic uncertain wind load for designing reliable wind turbine systems. In this study, 249 groups of measured wind data, collected at different locations and in different years, are used to develop a dynamic wind load uncertainty model. The dynamic wind load uncertainty model consists of annual wind load variation and wind load variation in a large spatiotemporal range, i.e., at different locations and in different years. The annual wind load variation is represented by the joint probability density function of V10 and I10. The wind load variation in a large spatiotemporal range is represented by the probability density functions of five parameters, C, k, a, b, and τ, which determine the joint probability density function of V10 and I10. In order to obtain the RBDO optimum design efficiently, a deterministic design optimization (DDO) procedure of a composite wind turbine blade has been first carried out using averaged percentage of time (probability) for each wind condition. A wind condition is specified by two terms: 10-minute mean wind speed and 10-minute turbulence intensity. In this research, a probability table, which consists of averaged probabilities corresponding to different wind conditions, is referred as a mean wind load. The mean wind load is generated using the dynamic wind load uncertainty model. During the DDO process, the laminate thickness design variables are tailored to minimize the total cost of composite materials while satisfying the target fatigue lifespan of 20 years. It is found that, under the mean wind load condition, the fatigue life of the initial design is only 0.0004 year. After the DDO process, even though the cost at the DDO optimum design is increased by 31.5% compared to that at the initial design, the predicted fatigue life at the DDO optimum design is significantly increased to 19.9995 years. Reliability analyses of the initial design and the DDO optimum design have been carried out using the wind load uncertainty model and Monte Carlo simulation. The reliability analysis results show that the DDO procedure reduces the probability of failure from 100% at the initial design to 49.9% at the DDO optimum design considering only wind load uncertainty. In order to satisfy the target 2.275% probability of failure, it is necessary to further improve the fatigue reliability of the composite wind turbine blade by RBDO. Reliability-based design optimization of the composite wind turbine blade has been carried out starting at the DDO optimum design. Fatigue hotspots for RBDO are identified among the laminate section points, which are selected from the DDO optimum design. Local surrogate models for 10-minute fatigue damage have been created at the selected hotspots. Using the local surrogate models, both the wind load uncertainty and manufacturing variability has been included in the RBDO process. It is found that the probability of failure is 50.06% at the RBDO initial design (DDO optimum design) considering both wind load uncertainty and manufacturing variability. During the RBDO process, the normalized laminate thickness design variables are tailored to minimize the total cost of composite materials while satisfying the target 2.275% probability of failure. The obtained RBDO optimum design reduces the probability of failure from 50.06% at the DDO optimum design to 2.28%, while increasing the cost by 3.01%.
62

Fiber Laser Welding of Advanced High Strength Steels

Westerbaan, Daniel January 2013 (has links)
Fiber laser welding (FLW) was used to join advanced high strength steel (AHSS) and high strength steel (HSS); specifically two dual-phase (DP) steels, with ultimate tensile strengths above 980 MPa and with different chemistries (DP980 Rich and DP980 Lean), and a high strength low alloy (HSLA) steel, with an ultimate tensile strength of 450MPa (HSLA450). The welding speed and power were varied to develop a process envelope for minimizing weld concavity. In order to attain welds free of weld concavity a balance of speed and power was required; weld concavity could be reduced by lowering power and increasing speed. Welds with amounts of concavity ranging from 15 % to 35 % were characterized with respect to hardness, tensile and fatigue testing. Tensile results revealed that DP steel was sensitive to weld concavity while HSLA450 was not. At stress amplitudes enduring beyond 1000 cycles, welded specimens exhibited lower fatigue resistance compared to the base metal. Concavity reduced the fatigue life of DP980 steels, where increasing the amount of concavity further reduced the fatigue resistance, while the fatigue resistance of HSLA steel welds was not sensitive to weld concavity. Hardness profiling of the welds revealed that HAZ softening was present in the DP980 steel welds. The amount of HAZ softening was normalized; allowing for comparison of different steels. Welds made by FLW demonstrated reduced softening compared other laser welding types because FLW was capable of welding with lower heat input. A difference in the FZ hardness was observed between the DP980 steels because of the difference in carbon content of the steels; where higher carbon content resulted in higher FZ hardness. Additionally the high cooling rate in FLW created higher fusion zone hardness than the values predicted by Yurioka’s model based on arc welding. Examination of the microstructure revealed that the soft zone of DP980 Lean steel possessed severely tempered martensite and untransformed ferrite while DP980 Rich generated a structure with a mixture of tempered martensite, untransformed ferrite and a small fraction of non-tempered martensite. This difference in HAZ softening was attributed to the alloying content of the DP980 Rich steel the higher alloying content of DP980 Rich steel formed a stable austenite that could exist near the Ac1 temperature and enabled the formation of new martensite in the soft zone. The effects of HAZ softening were apparent in tensile testing where the DP980 Lean steel, which exhibited higher softening, demonstrated by a severe reduction in elongation while the DP980 Rich steel, which had higher resistance to softening, attained elongation comparable to its base metal. HSLA450 exhibited a slight reduction in elongation due to the hardening of the fusion zone. The welded DP980 Rich and HSLA450 steels consistently failed within the base metal, while the DP980 Lean steel failed in the soft zone. The welded DP980 Rich steel also demonstrated limiting dome heights comparable to the base metal while the severe softening in the DP980 Lean led to premature fracture in the soft zone, yielding a larger reduction in the limiting dome height.
63

Termisk cyklisk utmattning studie av Gd2Zr2O7 / YSZ flerskikts termiska barriärbeläggningar / Thermal cyclic fatigue study of Gd2Zr2O7/ YSZ multi-layered thermal barrier coatings

Gokavarapu, Naga Sai Pavan Rahul January 2015 (has links)
From many years YSZ is used as the top coat material for TBC's, as it has good phase stability up to 1200°C, higher fracture toughness, lower thermal conductivity, erosion resistance & higher coefficient of thermal expansion. But, it has a drawbacks at high temperature such as sintering and transformation of phases. For this reason new ceramic materials with pyrochlores crystal structure such as Gd2Zr2O7 are being considered as it has high melting points, phase stability, lower thermal conductivity and CMAS resistance. But it has low fracture toughness when compared to YSZ. In order to take advantage of low thermal conductivity and high thermal stability of gadolinium zirconate and avoiding the drawbacks of low coefficient of thermal expansion and low toughness using YSZ, a double/multi-layer coatings approach is being used. Therefore, multi-layer TBCs are sprayed and compared with single layer coating in this work. These coatings are processed by suspension plasma spraying. For single layer coating YSZ is used, for double layer coating YSZ as the intermediate coating and Gd2Zr2O7 as the top coat is used. Additionally, a triple layer coating system comprising YSZ, Gd2Zr2O7 and dense Gd2Zr2O7 as top coat is also sprayed. The as sprayed coatings are characterized for microstructure analysis using optical microscope and scanning electron microscope (SEM), elemental analysis of TGO using Energy-Dispersive Spectrometer (EDS). XRD analysis was done to identify various phases in the coating. Porosity analysis using Archimedes principle was carried out. Thermal cyclic fatigue (TCF) test of the sprayed coatings was carried out at 1100°C. Failure analysis of the TCF specimens was carried out using SEM/EDS. TCF results showed that the triple layer coatings (dense Gd2Zr2O7/Gd2Zr2O7/YSZ) had higher thermal cyclic fatigue life and lower TGO thickness when compared to single layer (YSZ) and double layer (Gd2Zr2O7/YSZ) TBCs.
64

Fiber Laser Welding of Advanced High Strength Steels

Westerbaan, Daniel January 2013 (has links)
Fiber laser welding (FLW) was used to join advanced high strength steel (AHSS) and high strength steel (HSS); specifically two dual-phase (DP) steels, with ultimate tensile strengths above 980 MPa and with different chemistries (DP980 Rich and DP980 Lean), and a high strength low alloy (HSLA) steel, with an ultimate tensile strength of 450MPa (HSLA450). The welding speed and power were varied to develop a process envelope for minimizing weld concavity. In order to attain welds free of weld concavity a balance of speed and power was required; weld concavity could be reduced by lowering power and increasing speed. Welds with amounts of concavity ranging from 15 % to 35 % were characterized with respect to hardness, tensile and fatigue testing. Tensile results revealed that DP steel was sensitive to weld concavity while HSLA450 was not. At stress amplitudes enduring beyond 1000 cycles, welded specimens exhibited lower fatigue resistance compared to the base metal. Concavity reduced the fatigue life of DP980 steels, where increasing the amount of concavity further reduced the fatigue resistance, while the fatigue resistance of HSLA steel welds was not sensitive to weld concavity. Hardness profiling of the welds revealed that HAZ softening was present in the DP980 steel welds. The amount of HAZ softening was normalized; allowing for comparison of different steels. Welds made by FLW demonstrated reduced softening compared other laser welding types because FLW was capable of welding with lower heat input. A difference in the FZ hardness was observed between the DP980 steels because of the difference in carbon content of the steels; where higher carbon content resulted in higher FZ hardness. Additionally the high cooling rate in FLW created higher fusion zone hardness than the values predicted by Yurioka’s model based on arc welding. Examination of the microstructure revealed that the soft zone of DP980 Lean steel possessed severely tempered martensite and untransformed ferrite while DP980 Rich generated a structure with a mixture of tempered martensite, untransformed ferrite and a small fraction of non-tempered martensite. This difference in HAZ softening was attributed to the alloying content of the DP980 Rich steel the higher alloying content of DP980 Rich steel formed a stable austenite that could exist near the Ac1 temperature and enabled the formation of new martensite in the soft zone. The effects of HAZ softening were apparent in tensile testing where the DP980 Lean steel, which exhibited higher softening, demonstrated by a severe reduction in elongation while the DP980 Rich steel, which had higher resistance to softening, attained elongation comparable to its base metal. HSLA450 exhibited a slight reduction in elongation due to the hardening of the fusion zone. The welded DP980 Rich and HSLA450 steels consistently failed within the base metal, while the DP980 Lean steel failed in the soft zone. The welded DP980 Rich steel also demonstrated limiting dome heights comparable to the base metal while the severe softening in the DP980 Lean led to premature fracture in the soft zone, yielding a larger reduction in the limiting dome height.
65

Fatigue life analysis of weld ends : Comparison between testing and FEM-calculations

Göransson, Andréas January 2014 (has links)
The thesis examines the fatigue life of weld ends, where very little usable research previously has been conducted, and often the weld ends are the critical parts of the weld. It is essential knowing the fatigue life of welds to be able to use them most efficiently.The report is divided into two parts; in the first the different calculation methods used today at Toyota Material Handling are examined and compared. Based on the results from the analysis and what is used mostly today, the effective notch approach is the method used in part two.To validate the calculation methods and models used, fatigue testing of the welded test specimens was conducted together with a stress test. New modelling methods of the weld ends that coincide with the test results were made in the finite element software Abaqus. A new way of modelling the weld ends for the effective notch method is also proposed. By using a notch radius of 0.2 mm and rounded weld ends the calculated fatigue life better matches the life of the real weld ends.
66

Advanced finite element analysis for strain measurement in a threaded connection

Bulkai, Andras January 2007 (has links)
There is no established method of measuring load accurately in a threaded connection at working temperatures exceeding 500°C. At these conditions conventional methods can not be used due to the sensitivity of the instruments and it is suggested that a non contact method should be used. The laser strain gauge was developed by the Loughborough University Optical Research Group and it is a non contact way of measuring surface strain. With the help of finite element analysis (FEA) a special nut was developed that can be used to measure the load on the connection by relating the surface strain of the nut to the load. Experimental work later revealed that due to the threads sticking in the connection there is hysteresis present between the load and surface strain relationship. To eliminate the hysteresis a new part was added to the connection which could be used to relate the surface strain on it to the load without any hysteresis. This new part was a specially designed washer with three grooves to allow easy access for the user to measure the surface strain using the laser strain gauge. Part of the design specification was that the load has to be determined to an accuracy of 0.5%. Using sensitivity analysis the washer was analysed in terms of how manufacturing imperfections affect the accuracy of the load measuring device. The results revealed that to achieve the required 0.5% accuracy the washer would have to be manufactured to very tight tolerances. To achieve these tight tolerances the manufacturing process would not be cost effective so it was proposed that individual calibration is required for each load measuring washer. Tests showed that with sufficient calibration the specially designed washer and the laser strain gauge can be combined and used as an accurate non contact load measuring device. As it is a non contact method it can be used in extreme environments including high temperatures. This thesis describes how background research, finite element analysis and experimental testing were used to develop the load measuring washer. Also it is shown, how in-depth sensitivity analysis was used to determine the accuracy of the prototype and that how manufacturing imperfections influence the working life of a threaded connection.
67

Acquisition Of Field Data For Agricultural Tractor

Koyuncu, Atayil 01 June 2006 (has links) (PDF)
During the operations of an agricultural tractor, front axle and front axle support encounter the worst load conditions of the whole tractor. If the design of these components is not verified by systematic engineering approach, the customers could face with sudden failures. Erkunt Agricultural Machinery Company, which is located in Ankara, has newly designed and manufactured the front axle support of its agricultural tractors. In this study, the design of 2WD (Wheel Drive) Erkunt Bereket Agricultural Tractor&amp / #8217 / s front axle support has been verified by developing a verification method, which involves testing the tractor on a special test track and field and together with the computer aided engineering analysis, in order to prevent such failures in the lifetime of the tractor. For this purpose, a strain gage data acquisition system has been designed to measure the strain values on the component, while the tractor is operating on a test track and field. The locations of the strain gages have been determined by simulating the selected design load cases through finite element method. Measuring the maximum strains for the front axle support that have been experienced by the tractor while operating, the stress values have been calculated and the design safety has been investigated considering the material&amp / #8217 / s tensile strength. Secondly, the fatigue life of the component regarding the acquired strain data has been predicted. These processes have led the company to verify the design of the front axle support.
68

Non-linear individual and interaction phenomena associated with fatigue crack growth.

Codrington, John David January 2008 (has links)
The fatigue of materials and structures is a subject that has been under investigation for almost 160 years; yet reliable fatigue life predictions are still more of an empirical art than a science. The traditional safe-life approach to fatigue design is based upon the total time to failure of a virtually defect free component. This approach is heavily reliant on the use of safety factors and empirical equations, and therefore much scatter in the fatigue life predictions is normally observed. Furthermore, the safe-life approach is unsuitable for many important applications such as aircraft, pressure vessels, welded structures, and microelectronic devices. In these applications the existence of initial defects is practically unavoidable and the time of propagation from an initial defect to final failure is comparable with the total life of the component. In the early 1970’s, the aircraft industry pioneered a new approach for the analysis of fatigue crack growth, known as damage tolerant design. This approach utilises fracture mechanics principles to consider the propagation of fatigue cracks from an initial crack length until final fracture, or a critical crack length, is reached. Since the first implementation of damage tolerant design, much research and development has been undertaken. In particular, theoretical and experimental fracture mechanics techniques have been utilised for the investigation of a wide variety of fatigue crack growth phenomena. One such example is the retardation and acceleration in crack growth rate caused by spike overloads or underloads. It is generally accepted, however, that the current level of understanding of fatigue crack growth phenomena and the adequacy of fatigue life prediction techniques are still far from satisfactory. This thesis theoretically investigates various non-linear individual and interaction phenomena associated with fatigue crack growth. Specifically, the effect of plate thickness on crack growth under constant amplitude loading, crack growth retardation due to an overload cycle, and small crack growth from sharp notches are considered. A new semianalytical method is developed for the investigations, which utilises the distributed dislocation technique and the well-known concept of plasticity-induced crack closure. The effects of plate thickness are included through the use of first-order plate theory and a fundamental solution for an edge dislocation in plate of arbitrary thickness. Numerical results are obtained via the application of Gauss-Chebyshev quadrature and an iterative procedure. The developed methods are verified against previously published theoretical and experimental data. The elastic out-of-plane stress and displacement fields are first investigated using the developed method and are found to be in very good agreement with past experimental results and finite element simulations. Crack tip plasticity is then introduced by way of a strip-yield model. The effects of thickness on the crack tip plasticity zone and plasticity-induced crack closure are studied for both small and large-scale yielding conditions. It is shown that, in general, an increase in plate thickness will lead to a reduction in the extent of the plasticity and associated crack closure, and therefore an increase in the crack growth rates. This observation is in agreement with many findings of past experimental and theoretical studies. An incremental crack growth scheme is implemented into the developed method to allow for the investigation of variable amplitude loading and small fatigue crack growth. The case of a single tensile overload is first investigated for a range of overload ratios and plate thicknesses. This situation is of practical importance as an overload cycle can significantly increase the service life of a cracked component by temporarily retarding the crack growth. Next to be studied is growth of physically small cracks from sharp notches. Fatigue cracks typically initiate from stress concentrations, such as notches, and can grow at rates higher than as predicted for a long established crack. This can lead to non-conservative estimates for the total fatigue life of a structural component. For both the overload and small crack cases, the present theoretical predictions correlate well with past experimental results for a range of materials. Furthermore, trends observed in the experiments match those of the predictions and can be readily explained through use of crack closure arguments. This thesis is presented in the form of a collection of published or submitted journal articles that are the result of research by the author. These nine articles have been chosen to best demonstrate the development and application of the new theoretical techniques. Additional background information and an introduction into the chosen field of research are provided in order to establish the context and significance of this work. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349588 / Thesis (Ph.D.) - University of Adelaide, School of Mechanical Engineering, 2008
69

Vital exhaustion and coronary artery disease in women : biological correlates and behavioral intervention /

Koertge, Jenny, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
70

Verificação do projeto estrutural de uma máquina de ensaio de fadiga de cadeira de rodas. / Verification of the structural design of a wheelchairs fatigue testing machine.

Ronaldo de Souza Moraes Junior 28 July 2008 (has links)
Para realizar ensaios de fadiga, é preciso que a máquina ou equipamento de testes tenha uma durabilidade muito maior que as estruturas ou componentes a serem ensaiados. O presente trabalho propõe-se a investigar a estrutura de uma máquina de ensaio de fadiga de cadeira de rodas, com o objetivo de determinar sua vida em fadiga. Para isto, uma análise da interação entre cadeira de rodas e máquina de ensaio é feita, do ponto de vista dinâmico, através de dados experimentais e modelagem em elementos finitos. A máquina de ensaio é constituída por uma estrutura com dois tambores rotativos, que possuem ressaltos, e suportam as rodas da cadeira de rodas. Estimada a força no tempo que a cadeira exerce sobre os tambores, calculam-se as tensões na estrutura, identificam-se as regiões de maiores tensões e estima-se a vida em fadiga da estrutura. / Fatigue analysis of full-scale structures and components is possible by using appropriated devices and machines which has to be much more durable than the structures or components being tested. The present work is proposed to investigate the structure of a wheelchair fatigue testing machine and predict its fatigue life. To reach this goal a dynamic analysis based on experimental data combined with the finite element method of the testing machine and wheelchair interaction is done. The machine is made of a structure and two turning drums that have slats and support the wheelchairs. With the timedependent force that wheelchair applies to the drums, the stresses are calculated to the whole structure, the sites with higher stresses are identified and the fatigue life of the structure is predicted.

Page generated in 0.0781 seconds