• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling fatigue and recovery in static postural exercise

Milner, N. P. January 1985 (has links)
No description available.
2

FATIGUE AND RECOVERY DURING TASKS WITH COMPLEX FORCE PATTERNS

Sonne, Michael Wesley Leyland 06 1900 (has links)
The purpose of this thesis was to improve our understanding of the progression of fatigue and recovery during repetitive work and to examine selected methods for predicting fatigue. In Chapter 2, a psychophysical methodology was used to validate the Maximum Acceptable Effort (MAE) equation of Potvin (2012) at duty cycles of greater than 0.5. The results from that study were used to evaluate the MAE equation in the higher duty cycle range. In Chapter 3, the fatigue process during complex MVC-relative force profiles was examined in a repetitive handgrip task. In Chapter 4, I examined the effect of manipulating the order of presentation of various MVC-relative force levels for a repetitive thumb flexion task. Additionally, the influence of post-activation potentiation was examined by stimulating the flexor pollicis longus (FPL) at specific time points during the complex profile. In Chapter 5, Xia and Frey Law’s (2008) three-compartment model (3CMXFL) of muscle fatigue was modified to more accurately reflect physiological processes. The model, with physiological modifications (3CMGMU), as well as the original 3CM optimized for complex tasks (3CMOPT), was optimized to predict the fatigue levels from the experiments described in Chapters 3 and 4, as well as 4 other similar experimental protocols. The predicted fatigue from the 3CMXFL was also compared to the experimental data. The 3CMOPT and 3CMGMU were compared against known endurance times. The 3CMGMU is proposed as an ergonomic tool for evaluating fatigue in repetitive tasks, and the future directions for fatigue modelling and using the MAE equation for complex force-time histories are addressed. This thesis provides the first studies of fatigue accumulation during complex MVC-relative time histories. The findings from this thesis can be applied to the workplace to reduce the risk of injury as a result of muscle fatigue. / Thesis / Doctor of Philosophy (PhD)
3

Microstructural alterations in bearing steels under rolling contact fatigue

Fu, Hanwei January 2017 (has links)
The formation of microstructural alterations in bearing steels under rolling contact fatigue (RCF) is systematically studied. A literature review summarizes current understanding in this field, leading to the key to the formation of these microstructural features being carbon redistribution as a consequence of cyclic rolling contact. In this context, a novel theory is postulated to describe the migration of carbon caused by gliding dislocations. The theory combines the Cottrell atmosphere theory with the Orowan equation and is capable of quantifying the dislocation-assisted carbon flux. Based on the proposed theory, models are suggested for different types of microstructural alterations formed in rolling contact fatigued bearings – dark etching regions (DERs), white etching bands (WEBs) and white etching areas (WEAs). Very good agreement is obtained between the predications made by the models and the experimental data from both this research and the literature. Moreover, the models consider the effects of contact pressure, temperature, rotational speed and number of cycles, and thus can be applied for universal RCF testing conditions. The reproduced microstructural features are also characterized using advanced characterization techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atom probe tomography (APT), with the observation validating the postulated formation mechanisms. It is demonstrated that DERs, WEBs and WEAs follow the same principle during formation – strain induced carbon redistribution. This is the first time that these microstructural alterations are quantitatively described using a unified theory. The achievements obtained from this research can be far reaching. It not only leads to great progress in understanding the phenomenology of RCF in bearing steels, but also can be further extended to other scenarios with similar phenomena such as severe plastic deformation and hydrogen embrittlement.
4

Modeling Optimal Cadence as a Function of Time during Maximal Sprint Exercises Can Improve Performance by Elite Track Cyclists

Dunst, Anna Katharina, Grüneberger, René, Holmberg, Hans-Christer 26 April 2023 (has links)
In track cycling sprint events, optimal cadence PRopt is a dynamic aspect of fatigue. It is currently unclear what cadence is optimal for an athlete’s performance in sprint races and how it can be calculated. We examined fatigue-induced changes in optimal cadence during a maximal sprint using a mathematical approach. Nine elite track cyclists completed a 6-s high-frequency pedaling test and a 60-s isokinetic all-out sprint on a bicycle ergometer with continuous monitoring of crank force and cadence. Fatigue-free force-velocity (F/v) and power-velocity (P/v) profiles were derived from both tests. The development of fatigue during the 60-s sprint was assessed by fixing the slope of the fatigue-free F/v profile. Fatigue-induced alterations in PRopt were determined by non-linear regression analysis using a mono-exponential equation at constant slope. The study revealed that PRopt at any instant during a 60-s maximal sprint can be estimated accurately using a mono-exponential equation. In an isokinetic mode, a mean PRopt can be identified that enables the athlete to generate the highest mean power output over the course of the effort. Adding the time domain to the fatigue-free F/v and P/v profiles allows time-dependent cycling power to be modelled independent of cadence.

Page generated in 0.0866 seconds