• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 9
  • 8
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Industrial Extended Multi-Scale Principle Components Analysis for Fault Detection and Diagnosis of Car Alternators and Starters

Ismail, Mahmoud 06 1900 (has links)
Quality assurance of electrical components of cars such as alternators and starters is an important consideration due to both commercial and safety reasons. The focus of this research is to develop a complete Fault Detection and Diagnosis (FDD) solution for alternators and starters for their implementation in test cells. The FDD would enable more reliable testing of production line parts without compromising high production throughput. Our proposed solution includes three elements: (1) background noise elimination; (2) fault detection and analysis; and (3) fault classi cation for fault type identi cation. Noise gating, Extended Multi-Scale Principle Component Analysis (EMSPCA), and Logistic Discriminant classi er were used to perform these three elements. The FDD strategy detects and extracts fault signatures from multiple sensors (which are vibration and sound measurements in this research). Included in this strategy is ltering of the background noise in sound measurements to enable operation and maintain FDD performance in noisy conditions. The EMSPCA is the core of the FDD strategy. EMSPCA breaks the fault into time-frequency scales using wavelets and applies Principle Component Analysis (PCA) on each scale. This reveals the signature of the fault. The fault signature is then examined by a classi er to match it with the correct type of faults. The total FDD strategy is automated and no operator intervention is required. The advantages of the proposed FDD strategy are: (1) high accuracy in detection and diagnosis; (2) robustness in noisy industrial conditions; and (3) no need for operators' intervention. These advantages make the proposed FDD strategy a promising candidate for mass industrial applications. / Thesis / Master of Applied Science (MASc)
2

Razvoj metoda dijagnostike usisnog sistema motora sa unutrašnjim sagorevanjem / Development of an IC Engine Intake Air Path Fault Diagnosis Method

Nikolić Nebojša 03 July 2015 (has links)
<p style="text-align: justify;">U radu je razvijen jedan matematički model za simuliranje ponašanja nekih važnih radnih parametara motora SUS, kada u njegovom usisnom sistemu postoje neispravnosti tipa: &bdquo;nepredviđeni ulaz vazduha u usisni kolektor&ldquo;, &bdquo;pogrešno očitavanje senzora masenog protoka vazduha&ldquo;, &bdquo;pogrešno očitavanje senzora pritiska u usisnom kolektoru&ldquo;, &bdquo;pogrešno očitavanje senzora temperature u usisnom kolektoru&ldquo; i &bdquo;umanjen EGR protok&ldquo;. Na osnovu rezultata ovog modela predložen je novi dijagnostički koncept, u okviru kojeg je razvijen jedan model za prepoznavanje pomenutih neispravnosti. Predloženi koncept je proveren na realnim podacima, prikupljenim ispitivanjem jednog stvarnog motora u laboratorijskim uslovima, pri čemu su dobijeni zadovoljavajući rezultati.</p> / <p>A mathematical model capable of simulating some important IC engine operating parameters behavior when a fault in its intake air path exists. The faults considered are of the following types: &bdquo;air leakage in the intake path&ldquo;, &bdquo;faulty mass air flow sensor&ldquo;, &bdquo;faulty manifold absolute pressure sensor&ldquo;, &bdquo;faulty intake air temperature sensor&ldquo; and &bdquo;clogged EGR pipe&ldquo;. Relying on the data obtained by the fault simulator, a novel diagnosis concept is proposed. A model for fault detection and diagnosis was developed in the scope of the concept. The proposed concept was tested on the real data collected from an automobile IC engine in the laboratory conditions and satisfying results were obtained.</p>
3

Current based fault detection and diagnosis of induction motors : adaptive mixed-residual approach for fault detection and diagnosis of rotor, stator, bearing and air-gap faults in induction motors using a fuzzy logic classifier with voltage and current measurement only

Bradley, William John January 2013 (has links)
Induction motors (IM) find widespread use in modern industry and for this reason they have been subject to a significant amount of research interest in recent times. One particular aspect of this research is the fault detection and diagnosis (FDD) of induction motors for use in a condition based maintenance (CBM) strategy; by effectively tracking the condition of the motor, maintenance action need only be carried out when necessary. This type of maintenance strategy minimises maintenance costs and unplanned downtime. The benefits of an effective FDD for IM is clear and there have been numerous studies in this area but few which consider the problem in a practical sense with the aim of developing a single system that can be used to monitor motor condition under a range of different conditions, with different motor specifications and loads. This thesis aims to address some of these problems by developing a general FDD system for induction motor. The solution of this problem involved the development and testing of a new approach; the adaptive mixed-residual approach (AMRA). The main aim of the AMRA system is to avoid the vast majority of unplanned failures of the machine and therefore as opposed to tackling a single induction motor fault, the system is developed to detect all four of the most statistically prevalent induction motor fault types; rotor fault, stator fault, air-gap fault and bearing fault. The mixed-residual fault detection algorithm is used to detect these fault types which includes a combination of spectral and model-based techniques coupled with particle swarm optimisation (PSO) for automatic identification of motor parameters. The AMRA residuals are analysed by a fuzzy-logic classifier and the system requires only current and voltage inputs to operate. Validation results indicate that the system performs well under a range of load torques and different coupling methods proving it to have significant potential for use in industrial applications.
4

Real-time supervision of building HVAC system performance

Djuric, Natasa January 2008 (has links)
<p>This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools.</p><p>Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance.</p><p>The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems.</p><p>The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the building maintenance structure and the real hydronic heating system faults.</p><p>Coupled simulation and optimization programs (EnergyPlus and GenOpt) were utilized for improving the building performances. These tools were used for improving the design and the control strategies in the HVAC systems. Buildings with a hydronic heating system were analyzed for the purpose of improving the design. Since there are issues in using the optimization tool, GenOpt, a few procedures for different practical problems have been suggested. The optimization results show that the choice of the optimization functions influences significantly the design parameters for the hydronic heating system.</p><p>Since building construction and equipment characteristics are changing over time, there is a need to find new control strategies which can meet the actual building demand. This problem has been also elaborated on by using EnergyPlus and GenOpt. The control strategies in two different HVAC systems were analyzed, including the hydronic heating system and the ventilation system with the recovery wheel. The developed approach for the strategy optimization includes: involving the optimization variables and the objective function and developing information flow for handling the optimization process.</p><p>The real data obtained from BEMS and the additional measurements have been utilized to explain faults in the hydronic heating system. To couple real data and the simple heat balance model, the procedure for the model calibration by use of an optimization algorithm has been developed. Using this model, three operating faults in the hydronic heating system have been elaborated.</p><p>Using the simulation tools EnergyPlus and TRNSYS, several fault detection and diagnosis (FDD) rules have been generated. The FDD rules were established in three steps: testing different faults, calculating the performance indices (PI), and classifying the observed PIs. These rules have been established for the air cooling system and the hydronic heating system. The rules can diagnose the control and the component faults. Finally, analyzing the causes and the effects of the tested faults, useful information for the building maintenance has been descriptively explained.</p><p>The most important conclusions are related to a practical connection of the real data and simulation-based tools. For a complete understanding of system faults, it is necessary to provide real-life information. Even though BEMS provides many building data, it was proven that BEMS is not completely utilized. Therefore, the control strategies can always be improved and tuned to the actual building demands using the simulation and optimization tools. It was proven that many different FDD rules for HVAC systems can be generated using the simulation tools. Therefore, these FDD rules can be used as manual instructions for the building operators or as a framework for the automated FDD algorithms.</p> / <p>Denne avhandlingen presenterer noen fremgangsmåter for forbedring av ytelser for VVS-tekniske anlegg i eksisterende bygninger basert på bruk av simuleringsverktøy og virkelige måledata. Ett av målene har vært å undersøke behov og muligheter for vurdering og forbedring av ytelser for VVS-anlegg i bygninger. I tillegg har denne avhandlingen hatt som mål å fremme bruk av SD-anlegg samt å fremskaffe nyttig informasjon til driftspersonalet.</p><p>Bygninger blir stadig mer kompliserte systemer som inneholder flere og flere komponenter mens SD-anlegg håndterer en stadig større mengde data fra bygningsinstallasjoner. På den ene siden registreres det ofte feil og problemer med hensyn til ytelsene til de VVS-tekniske installasjonene. På den andre siden innføres det stadig strengere lovmessige pålegg og kost-nyttekrav motivert i energieffektiviseringen. SD-anlegg og databaserte verktøy bør derfor brukes mer effektivt for forbedring av ytelsene.</p><p>Avhandlingen består av fire hoveddeler hvor hver del kan leses separat. Den første delen, som er basert på literatturstudie, forklarer funksjonskontroll som begrep og prinsipper for oppbygging av verktøy for funksjonskontroll. Den andre delen presenterer praktisk erfaring og problemstillinger utviklet og behandlet i løpet av arbeidet med avhandlingen. Den tredje delen handler om anvendelse av databaserte verktøy for forbedring av ytelsen for VVS-tekniske installasjoner. Den tredje delen er delt opp i to kapitler, hvorav et handler om forbedring av systemløsninger og et om forbedring av styringsstrategier. Den siste delen presenterer flere regler for feilsøking og diagnostisering utviklet gjennom bruk av simuleringsverktøy. I tillegg gir denne delen en praktisk forklaring av feilene i de VVS-anleggene som er behandlet i undersøkelsen.</p><p>Det praktiske grunnlaget for avhandlingen er etablert gjennom to undersøkelser. Den første var en spørreundersøkelse som hadde til hensikt å kartlegge målsetninger for funksjonskontroll i norske bygninger. Gjennom dette ble det etablert en oversikt over de mest typiske bygninger med tilhørende VVS-anlegg og de mest forekommende problemene. En dypere undersøkelse ble utført på ett casebygg. Denne undersøkelsen viste seg å være nyttig både for kartlegging av betydningen av organisering av driften av bygningen og for avdekking av de virkelige feilene i det vannbårne oppvarmingssystemet.</p><p>En kobling mellom et simulerings- og et optimaliseringsprogram (EnergyPlus og GenOpt) har vært benyttet for forbedring av ytelsene for de VVS-tekniske installasjonene. Disse verktøyene har vært brukt for forbedring av både systemløsningene og styringsstrategiene for VVS-anlegg. Bygninger med vannbåren oppvarmingssystem har vært analysert for å forbedre systemløsningen. På grunn av begrensninger i bruken av optimaliseringsverktøyet GenOpt, har det blitt utviklet egne prosedyrer for håndtering av visse typer problemstillinger hvor denne begrensningen opptrer. Resultatene for optimaliseringen viser at valg av objektfunksjoner påvirker betydelig parametrene i det vannbårne oppvarmingssystemet.</p><p>Endringer i egenskapene til både bygningskonstruksjoner og utstyr som skjer på grunn av aldring over tiden, gjør det nødvendig med tilpassning av styringsstrategier slik at det virkelige behovet kan bli dekket. Denne problemstillingen har vært analysert ved bruk av EnergyPlus og GenOpt. Styringsstrategiene for to forskjellige VVS-anlegg, et vannbåret oppvarmingssystem og et ventilasjonsanlegg med varmegjenvinner har blitt behandlet. Den utviklete prosedyren for optimalisering av styringsstrategien består av følgende steg: innføring av optimaliseringsvariabler og objektfunksjon, samt utvikling av informasjonsflyt for behandling av optimaliseringsprosessen.</p><p>De virkelige data, både fra SD-anlegg og tilleggsmålinger, har vært benyttet for praktisk forklaring av feilene i oppvarmingssystemet. En prosedyre for modellkalibrering basert på bruk av en optimaliseringsalgoritme som kobler sammen de virkelige data og en enkel varmebalansemodell har blitt foreslått. Tre konkrete driftsfeil i oppvarmingssystemet har blitt belyst gjennom bruk av denne varmebalansemodellen.</p><p>Flere regler for feilsøking og diagnostisering har blitt utviklet ved hjelp av simuleringsverktøyene EnergyPlus and TRNSYS. Denne utviklingen har bestått av tre ulike steg: testing av bestemte feil, beregning av ytelsesindikatorer og til slutt klassifisering av de observerte ytelsesindikatorer. Reglene har blitt utviklet for et system av aggregater for luftkjøling og for et vannbåret oppvarmingssystem. Reglene kan diagnostisere både styringsfeil og komponentfeil. Til slutt presenteres informasjon som er nyttig for drift av VVS-tekniske installasjoner i bygninger basert på en analyse av årsakene for og virkningene av de feil som er behandlet.</p><p>De viktigste konklusjonene er knyttet til praktisk kombinasjon av virkelige måleverdier og simuleringsverktøy. Informasjon fra det virkelig liv er helt nødvendig for å få en god forståelse av feil som oppstår i anlegg. Det er også vist at potensialet som ligger i alle de data som er tilgjengelige gjennom SD-anlegg, ikke er fullt utnyttet. Gjennom bruk av simuleringsverktøy kan styringsstrategiene alltid bli bedre tilpasset og innjustert til de virkelige behov i bygningen. Simuleringsverktøy kan også brukes for utvikling av prosedyrer for feilsøking og diagnostisering i VVS-tekniske anlegg. Disse prosedyrene kan brukes enten som en veileder for manuell feilsøking og detektering eller som grunnlag for utvikling av automatiserte algoritmer.</p> / Paper II, VI and VII are reprinted with kind permission from Elsevier, sciencedirect.com
5

Real-time supervision of building HVAC system performance

Djuric, Natasa January 2008 (has links)
This thesis presents techniques for improving building HVAC system performance in existing buildings generated using simulation-based tools and real data. Therefore, one of the aims has been to research the needs and possibilities to assess and improve building HVAC system performance. In addition, this thesis aims at an advanced utilization of building energy management system (BEMS) and the provision of useful information to building operators using simulation tools. Buildings are becoming more complex systems with many elements, while BEMS provide many data about the building systems. There are, however, many faults and issues in building performance, but there are legislative and cost-benefit forces induced by energy savings. Therefore, both BEMS and the computer-based tools have to be utilized more efficiently to improve building performance. The thesis consists of four main parts that can be read separately. The first part explains the term commissioning and the commissioning tool work principal based on literature reviews. The second part presents practical experiences and issues introduced through the work on this study. The third part deals with the computer-based tools application in design and operation. This part is divided into two chapters. The first deals with improvement in the design, and the second deals with the improvement in the control strategies. The last part of the thesis gives several rules for fault diagnosis developed using simulation tools. In addition, this part aims at the practical explanation of the faults in the building HVAC systems. The practical background for the thesis was obtained though two surveys. The first survey was carried out with the aim to find the commissioning targets in Norwegian building facilities. In that way, an overview of the most typical buildings, HVAC equipment, and their related problems was obtained. An on-site survey was carried out on an example building, which was beneficial for introducing the building maintenance structure and the real hydronic heating system faults. Coupled simulation and optimization programs (EnergyPlus and GenOpt) were utilized for improving the building performances. These tools were used for improving the design and the control strategies in the HVAC systems. Buildings with a hydronic heating system were analyzed for the purpose of improving the design. Since there are issues in using the optimization tool, GenOpt, a few procedures for different practical problems have been suggested. The optimization results show that the choice of the optimization functions influences significantly the design parameters for the hydronic heating system. Since building construction and equipment characteristics are changing over time, there is a need to find new control strategies which can meet the actual building demand. This problem has been also elaborated on by using EnergyPlus and GenOpt. The control strategies in two different HVAC systems were analyzed, including the hydronic heating system and the ventilation system with the recovery wheel. The developed approach for the strategy optimization includes: involving the optimization variables and the objective function and developing information flow for handling the optimization process. The real data obtained from BEMS and the additional measurements have been utilized to explain faults in the hydronic heating system. To couple real data and the simple heat balance model, the procedure for the model calibration by use of an optimization algorithm has been developed. Using this model, three operating faults in the hydronic heating system have been elaborated. Using the simulation tools EnergyPlus and TRNSYS, several fault detection and diagnosis (FDD) rules have been generated. The FDD rules were established in three steps: testing different faults, calculating the performance indices (PI), and classifying the observed PIs. These rules have been established for the air cooling system and the hydronic heating system. The rules can diagnose the control and the component faults. Finally, analyzing the causes and the effects of the tested faults, useful information for the building maintenance has been descriptively explained. The most important conclusions are related to a practical connection of the real data and simulation-based tools. For a complete understanding of system faults, it is necessary to provide real-life information. Even though BEMS provides many building data, it was proven that BEMS is not completely utilized. Therefore, the control strategies can always be improved and tuned to the actual building demands using the simulation and optimization tools. It was proven that many different FDD rules for HVAC systems can be generated using the simulation tools. Therefore, these FDD rules can be used as manual instructions for the building operators or as a framework for the automated FDD algorithms. / Denne avhandlingen presenterer noen fremgangsmåter for forbedring av ytelser for VVS-tekniske anlegg i eksisterende bygninger basert på bruk av simuleringsverktøy og virkelige måledata. Ett av målene har vært å undersøke behov og muligheter for vurdering og forbedring av ytelser for VVS-anlegg i bygninger. I tillegg har denne avhandlingen hatt som mål å fremme bruk av SD-anlegg samt å fremskaffe nyttig informasjon til driftspersonalet. Bygninger blir stadig mer kompliserte systemer som inneholder flere og flere komponenter mens SD-anlegg håndterer en stadig større mengde data fra bygningsinstallasjoner. På den ene siden registreres det ofte feil og problemer med hensyn til ytelsene til de VVS-tekniske installasjonene. På den andre siden innføres det stadig strengere lovmessige pålegg og kost-nyttekrav motivert i energieffektiviseringen. SD-anlegg og databaserte verktøy bør derfor brukes mer effektivt for forbedring av ytelsene. Avhandlingen består av fire hoveddeler hvor hver del kan leses separat. Den første delen, som er basert på literatturstudie, forklarer funksjonskontroll som begrep og prinsipper for oppbygging av verktøy for funksjonskontroll. Den andre delen presenterer praktisk erfaring og problemstillinger utviklet og behandlet i løpet av arbeidet med avhandlingen. Den tredje delen handler om anvendelse av databaserte verktøy for forbedring av ytelsen for VVS-tekniske installasjoner. Den tredje delen er delt opp i to kapitler, hvorav et handler om forbedring av systemløsninger og et om forbedring av styringsstrategier. Den siste delen presenterer flere regler for feilsøking og diagnostisering utviklet gjennom bruk av simuleringsverktøy. I tillegg gir denne delen en praktisk forklaring av feilene i de VVS-anleggene som er behandlet i undersøkelsen. Det praktiske grunnlaget for avhandlingen er etablert gjennom to undersøkelser. Den første var en spørreundersøkelse som hadde til hensikt å kartlegge målsetninger for funksjonskontroll i norske bygninger. Gjennom dette ble det etablert en oversikt over de mest typiske bygninger med tilhørende VVS-anlegg og de mest forekommende problemene. En dypere undersøkelse ble utført på ett casebygg. Denne undersøkelsen viste seg å være nyttig både for kartlegging av betydningen av organisering av driften av bygningen og for avdekking av de virkelige feilene i det vannbårne oppvarmingssystemet. En kobling mellom et simulerings- og et optimaliseringsprogram (EnergyPlus og GenOpt) har vært benyttet for forbedring av ytelsene for de VVS-tekniske installasjonene. Disse verktøyene har vært brukt for forbedring av både systemløsningene og styringsstrategiene for VVS-anlegg. Bygninger med vannbåren oppvarmingssystem har vært analysert for å forbedre systemløsningen. På grunn av begrensninger i bruken av optimaliseringsverktøyet GenOpt, har det blitt utviklet egne prosedyrer for håndtering av visse typer problemstillinger hvor denne begrensningen opptrer. Resultatene for optimaliseringen viser at valg av objektfunksjoner påvirker betydelig parametrene i det vannbårne oppvarmingssystemet. Endringer i egenskapene til både bygningskonstruksjoner og utstyr som skjer på grunn av aldring over tiden, gjør det nødvendig med tilpassning av styringsstrategier slik at det virkelige behovet kan bli dekket. Denne problemstillingen har vært analysert ved bruk av EnergyPlus og GenOpt. Styringsstrategiene for to forskjellige VVS-anlegg, et vannbåret oppvarmingssystem og et ventilasjonsanlegg med varmegjenvinner har blitt behandlet. Den utviklete prosedyren for optimalisering av styringsstrategien består av følgende steg: innføring av optimaliseringsvariabler og objektfunksjon, samt utvikling av informasjonsflyt for behandling av optimaliseringsprosessen. De virkelige data, både fra SD-anlegg og tilleggsmålinger, har vært benyttet for praktisk forklaring av feilene i oppvarmingssystemet. En prosedyre for modellkalibrering basert på bruk av en optimaliseringsalgoritme som kobler sammen de virkelige data og en enkel varmebalansemodell har blitt foreslått. Tre konkrete driftsfeil i oppvarmingssystemet har blitt belyst gjennom bruk av denne varmebalansemodellen. Flere regler for feilsøking og diagnostisering har blitt utviklet ved hjelp av simuleringsverktøyene EnergyPlus and TRNSYS. Denne utviklingen har bestått av tre ulike steg: testing av bestemte feil, beregning av ytelsesindikatorer og til slutt klassifisering av de observerte ytelsesindikatorer. Reglene har blitt utviklet for et system av aggregater for luftkjøling og for et vannbåret oppvarmingssystem. Reglene kan diagnostisere både styringsfeil og komponentfeil. Til slutt presenteres informasjon som er nyttig for drift av VVS-tekniske installasjoner i bygninger basert på en analyse av årsakene for og virkningene av de feil som er behandlet. De viktigste konklusjonene er knyttet til praktisk kombinasjon av virkelige måleverdier og simuleringsverktøy. Informasjon fra det virkelig liv er helt nødvendig for å få en god forståelse av feil som oppstår i anlegg. Det er også vist at potensialet som ligger i alle de data som er tilgjengelige gjennom SD-anlegg, ikke er fullt utnyttet. Gjennom bruk av simuleringsverktøy kan styringsstrategiene alltid bli bedre tilpasset og innjustert til de virkelige behov i bygningen. Simuleringsverktøy kan også brukes for utvikling av prosedyrer for feilsøking og diagnostisering i VVS-tekniske anlegg. Disse prosedyrene kan brukes enten som en veileder for manuell feilsøking og detektering eller som grunnlag for utvikling av automatiserte algoritmer. / Paper II, VI and VII are reprinted with kind permission from Elsevier, sciencedirect.com
6

Observability and Economic aspects of Fault Detection and Diagnosis Using CUSUM based Multivariate Statistics

Bin Shams, Mohamed January 2010 (has links)
This project focuses on the fault observability problem and its impact on plant performance and profitability. The study has been conducted along two main directions. First, a technique has been developed to detect and diagnose faulty situations that could not be observed by previously reported methods. The technique is demonstrated through a subset of faults typically considered for the Tennessee Eastman Process (TEP); which have been found unobservable in all previous studies. The proposed strategy combines the cumulative sum (CUSUM) of the process measurements with Principal Component Analysis (PCA). The CUSUM is used to enhance faults under conditions of small fault/signal to noise ratio while the use of PCA facilitates the filtering of noise in the presence of highly correlated data. Multivariate indices, namely, T2 and Q statistics based on the cumulative sums of all available measurements were used for observing these faults. The ARLo.c was proposed as a statistical metric to quantify fault observability. Following the faults detection, the problem of fault isolation is treated. It is shown that for the particular faults considered in the TEP problem, the contribution plots are not able to properly isolate the faults under consideration. This motivates the use of the CUSUM based PCA technique previously used for detection, for unambiguously diagnose the faults. The diagnosis scheme is performed by constructing a family of CUSUM based PCA models corresponding to each fault and then testing whether the statistical thresholds related to a particular faulty model is exceeded or not, hence, indicating occurrence or absence of the corresponding fault. Although the CUSUM based techniques were found successful in detecting abnormal situations as well as isolating the faults, long time intervals were required for both detection and diagnosis. The potential economic impact of these resulting delays motivates the second main objective of this project. More specifically, a methodology to quantify the potential economical loss due to unobserved faults when standard statistical monitoring charts are used is developed. Since most of the chemical and petrochemical plants are operated under closed loop scheme, the interaction of the control is also explicitly considered. An optimization problem is formulated to search for the optimal tradeoff between fault observability and closed loop performance. This optimization problem is solved in the frequency domain by using approximate closed loop transfer function models and in the time domain using a simulation based approach. The optimization in the time domain is applied to the TEP to solve for the optimal tuning parameters of the controllers that minimize an economic cost of the process.
7

Model-Based Intelligent Fault Detection and Diagnosis for Mating Electric Connectors in Robotic Wiring Harness Assembly Systems

Huang, Jian, Fukuda, Toshio, 福田, 敏男, Matsuno, Takayuki 02 1900 (has links)
No description available.
8

Data driven process monitoring based on neural networks and classification trees

Zhou, Yifeng 01 November 2005 (has links)
Process monitoring in the chemical and other process industries has been of great practical importance. Early detection of faults is critical in avoiding product quality deterioration, equipment damage, and personal injury. The goal of this dissertation is to develop process monitoring schemes that can be applied to complex process systems. Neural networks have been a popular tool for modeling and pattern classification for monitoring of process systems. However, due to the prohibitive computational cost caused by high dimensionality and frequently changing operating conditions in batch processes, their applications have been difficult. The first part of this work tackles this problem by employing a polynomial-based data preprocessing step that greatly reduces the dimensionality of the neural network process model. The process measurements and manipulated variables go through a polynomial regression step and the polynomial coefficients, which are usually of far lower dimensionality than the original data, are used to build a neural network model to produce residuals for fault classification. Case studies show a significant reduction in neural model construction time and sometimes better classification results as well. The second part of this research investigates classification trees as a promising approach to fault detection and classification. It is found that the underlying principles of classification trees often result in complicated trees even for rather simple problems, and construction time can excessive for high dimensional problems. Fisher Discriminant Analysis (FDA), which features an optimal linear discrimination between different faults and projects original data on to perpendicular scores, is used as a dimensionality reduction tool. Classification trees use the scores to separate observations into different fault classes. A procedure identifies the order of FDA scores that results in a minimum tree cost as the optimal order. Comparisons to other popular multivariate statistical analysis based methods indicate that the new scheme exhibits better performance on a benchmarking problem.
9

Performance monitoring and fault-tolerant control of complex systems with variable operating conditions

Cholette, Michael Edward 11 October 2012 (has links)
Ensuring the reliable operation of engineering systems has long been a subject of great practical and academic interest. This interest is clearly demonstrated by the preponderance of literature in the area of Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC), spanning the past three decades. However, increasingly stringent performance and safety requirements have led to engineering systems with progressively increasing complexity. This complexity has rendered many traditional FDD and FTC methods exceedingly cumbersome, often to the point of infeasibility. This thesis aims to enable FDD and FTC for complex engineering systems of interacting dynamic subsystems. For such systems, generic FDD/FTC methods have remained elusive. Effects caused by nonlinearities, interactions between subsystems and varying usage patterns complicate FDD and FTC. The goal of this thesis is to develop methods for FDD and FTC that will allow decoupling of anomalies occurred inside the monitored system from those occurred in the systems affecting the monitored system, as well as enabling performance recovery of the monitored system. In pursuit of these goals, FDD and FTC methods are explored that can account for operating regime-dependent effects in monitoring, diagnosis, prognosis and performance recovery for two classes of machines: those that operate in modes that can change only at distinct times (which often occur in manufacturing opera- tions such as drilling, milling, turning) and for those that operate in regimes that are continuously varying (such as automotive systems or electric motors). For machines that operate in modes that can change only at distinct times, a degradation model is postulated which describes how the system degrades over time for each operating regime. Using the framework of Hidden Markov Models (HMMs), modeling and identification tools are developed that enable identification a HMM of degradation for each machine operation. In the sequel, monitoring and prognosis methods that naturally follow from the framework of HMMs are also presented. The modeling and monitoring methodology is then applied to a real-world semiconductor manufacturing process using data provided by a major manufacturer. For machines that operate in regimes that are continuously varying, a behavioral model is postulated that describes the input-output dynamics of the nor- mal system in different operating regimes. Monitoring methods are presented that have the capability to account for operating regime-dependent modeling accuracies and isolate faults that have not been anticipated and for which no fault models are available. By conducting fault detection in a regime-dependent fashion, changes in modeling errors that are due to operating regime changes can be successfully distinguished from changes that are due to truly faulty operation caused by changes in the system dynamics. Enabled by this, unanticipated faults can be isolated through proliferation of the fault detection through the various subsystems of the anoma- lous system. The FDD methodology is applied to detect and diagnose faults for a multiple-input multiple-output Exhaust Gas Recirculation system in a diesel engine. Finally, methods to facilitate the recovery of normal system behavior are detailed. Using the same local model structure that was pursued for behavioral models, it is envisioned that the nominal controller will be reconfigured to attempt to recover nominal behavior as much as possible. To enable this reconfiguration, methods for automated design of closed-loop controllers for the local modeling structure are presented. Using a model-predictive approach with rigorous stability considerations, it is shown that the controllers can track a reference trajectory. Such a trajectory could be generated by any model that satisfies the control objectives, for normal or faulty systems. The controllers are then demonstrated on a benchmark nonlinear system that is nonlinear in the control. / text
10

Observability and Economic aspects of Fault Detection and Diagnosis Using CUSUM based Multivariate Statistics

Bin Shams, Mohamed January 2010 (has links)
This project focuses on the fault observability problem and its impact on plant performance and profitability. The study has been conducted along two main directions. First, a technique has been developed to detect and diagnose faulty situations that could not be observed by previously reported methods. The technique is demonstrated through a subset of faults typically considered for the Tennessee Eastman Process (TEP); which have been found unobservable in all previous studies. The proposed strategy combines the cumulative sum (CUSUM) of the process measurements with Principal Component Analysis (PCA). The CUSUM is used to enhance faults under conditions of small fault/signal to noise ratio while the use of PCA facilitates the filtering of noise in the presence of highly correlated data. Multivariate indices, namely, T2 and Q statistics based on the cumulative sums of all available measurements were used for observing these faults. The ARLo.c was proposed as a statistical metric to quantify fault observability. Following the faults detection, the problem of fault isolation is treated. It is shown that for the particular faults considered in the TEP problem, the contribution plots are not able to properly isolate the faults under consideration. This motivates the use of the CUSUM based PCA technique previously used for detection, for unambiguously diagnose the faults. The diagnosis scheme is performed by constructing a family of CUSUM based PCA models corresponding to each fault and then testing whether the statistical thresholds related to a particular faulty model is exceeded or not, hence, indicating occurrence or absence of the corresponding fault. Although the CUSUM based techniques were found successful in detecting abnormal situations as well as isolating the faults, long time intervals were required for both detection and diagnosis. The potential economic impact of these resulting delays motivates the second main objective of this project. More specifically, a methodology to quantify the potential economical loss due to unobserved faults when standard statistical monitoring charts are used is developed. Since most of the chemical and petrochemical plants are operated under closed loop scheme, the interaction of the control is also explicitly considered. An optimization problem is formulated to search for the optimal tradeoff between fault observability and closed loop performance. This optimization problem is solved in the frequency domain by using approximate closed loop transfer function models and in the time domain using a simulation based approach. The optimization in the time domain is applied to the TEP to solve for the optimal tuning parameters of the controllers that minimize an economic cost of the process.

Page generated in 0.1443 seconds