1 |
Localising imbalance faults in rotating machineryWalker, Ryan January 2013 (has links)
This thesis presents a novel method of locating imbalance faults in rotating machinery through the study of bearing nonlinearities. Localisation in this work is presented as determining which discs/segments of a complex machine are affected with an imbalance fault. The novel method enables accurate localisation to be achieved using a single accelerometer, and is valid for both sub and super-critical machine operations in the presence of misalignment and rub faults. The development of the novel system for imbalance localisation has been driven by the desire for improved maintenance procedures, along with the increased requirement for Integrated Vehicle Health Management (IVHM) systems for rotating machinery in industry. Imbalance faults are of particular interest to aircraft engine manufacturers such as Rolls Royce plc, where such faults still result in undesired downtime of machinery. Existing methods of imbalance localisation have yet to see widespread implementation in IVHM and Engine Health Monitoring (EHM) systems, providing the motivation for undertaking this project. The imbalance localisation system described has been developed primarily for a lab-based Machine Fault Simulator (MFS), with validation and verification performed on two additional test rigs. Physics based simulations have been used in order to develop and validate the system. An Artificial Neural Network (ANN) has been applied for the purposes of reasoning, using nonlinear features in the frequency domain originating from bearing nonlinearities. The system has been widely tested in a range of situations, including in the presence of misalignment and rub faults and on a full scale aircraft engine model. The novel system for imbalance localisation has been used as the basis for a methodology aimed at localising common faults in future IVHM systems, with the aim of communicating the results and findings of this research for the benefit of future research. The works contained herein therefore contribute to scientific knowledge in the field of IVHM for rotating machinery.
|
2 |
Fault simulator for proportional solenoid valvesBhojkar, Amit Arvind 09 August 2004 (has links)
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.
Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system.
The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
|
3 |
Fault simulator for proportional solenoid valvesBhojkar, Amit Arvind 09 August 2004
Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.<p>Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved. The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system. <p>The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability. Proportional Solenoid Valves (PSV) have been successfully used in the hydraulic industry for many years due to the benefits associated with higher accuracy compared to on/off solenoid valves, and the robustness and cost compared to servo valves. Because the PSV plays an important role in the performance of a hydraulic system, a technique commonly referred to as Condition Monitoring Scheme (CMS) has been used extensively to monitor the progress of faults in the PSV. But before any CMS can be implemented on a system, it needs to be thoroughly tested for its reliability of fault detection since, a failure of the CMS to detect any potential fault can be economically disastrous, and dangerous in terms of the safety of personnel. The motivation of this research was to develop a fault simulator which could reliably and repeatedly induce user defined faults in the PSV and thereby aid in testing the efficacy of the CMS for monitoring such simulated faults.
Industry research has revealed that the most common mode of failure in spool valves is an increase in the friction between the spool and valve, due to wear, contamination and dirt, which renders the valve inoperable. In this research, a non-destructive fault simulator was developed which induced artificial friction faults in the PSV. The PSV consisted of two solenoids on the opposite sides of the valve spool by virtue of which, bi-directional position control could be achieved.The PSV with the spool and one of the solenoids was used as the system in which the faults were simulated, and the second solenoid was used an a fault simulator for inducing the desired friction characteristics in the system.
The friction characteristics induced in the valve were similar to those in the classical friction curve, i.e., stiction at low velocities and Coulomb and viscous friction at higher velocities. By employing a closed loop position control scheme, one of the solenoids was used to generate a linearly increasing velocity profile by virtue of which the desired friction characteristics could be induced in different velocity regimes. The other solenoid was used to generate the desired friction force. A closed loop force control strategy, which used the feedback from a force transducer, allowed for the accurate control of the friction characteristics. stiction was induced at low velocities by passing the required current in both the solenoids that resulted in no net force on the valve spool. Due to the absence of any driving force the spool was stalled at the desired location, thus achieving the same effect of stiction at low velocities. The coulomb and viscous friction were induced at higher velocities by employing an algorithm which was a function of the spool velocity. Different magnitudes of static, coulomb and viscous friction were induced to achieve the friction characteristics represented by the classical friction curve. Since the change in force characteristics of the valve results in a corresponding change in the current drawn by the position control solenoid, a rudimentary CMS for monitoring the current characteristics is presented. Based on the experimental results and validation using the CMS it was concluded that the fault simulator was able to accurately produce the desired frictional loading on the valve spool and was able to do so with a high degree of repeatability.
|
4 |
Ανάπτυξη εξομοιωτή σφαλμάτων για σφάλματα μετάβασης σε ψηφιακά ολοκληρωμένα κυκλώματαΚασερίδης, Δημήτριος 26 September 2007 (has links)
Η μεταπτυχιακή αυτή εργασία μπορεί να χωριστεί σε δύο λογικά μέρη (Μέρος Α’ και Μέρος Β’). Το πρώτο μέρος αφορά τον έλεγχο ορθής λειτουργίας ψηφιακών κυκλωμάτων χρησιμοποιώντας το μοντέλο των Μεταβατικών (Transient) σφαλμάτων και πιο συγκεκριμένα περιλαμβάνει την μελέτη για το μοντέλο, τρόπο λειτουργίας και την υλοποίηση ενός Εξομοιωτή Μεταβατικών Σφαλμάτων (Transition Faults Simulator). Ο εξομοιωτής σφαλμάτων αποτελεί το πιο σημαντικό μέρος της αλυσίδας εργαλείων που απαιτούνται για τον σχεδιασμό και εφαρμογή τεχνικών ελέγχου ορθής λειτουργίας και η ύπαρξη ενός τέτοιου εργαλείου επιτρέπει την μελέτη νέων τεχνικών ελέγχου κάνοντας χρήση του Μεταβατικού μοντέλου σφαλμάτων.
Το δεύτερο μέρος της εργασίας συνοψίζει την μελέτη που πραγματοποιήθηκε για την δημιουργία ενός νέου αλγόριθμου επιλογής διανυσμάτων ελέγχου στην περίπτωση των Test Set Embedding τεχνικών ελέγχου. Ο αλγόριθμος επιτυγχάνει σημαντικές μειώσεις τόσο στον όγκο των απαιτούμενων δεδομένων που είναι απαραίτητο να αποθηκευτούν για την αναπαραγωγή του ελέγχου, σε σχέση με τις κλασικές προσεγγίσεις ελέγχου, όσο και στο μήκος των απαιτούμενων ακολουθιών ελέγχου που εφαρμόζονται στο υπό-έλεγχο κύκλωμα σε σχέση με προγενέστερους Test Set Embedding αλγορίθμους. Στο τέλος του μέρους Β’ προτείνεται μία αρχιτεκτονική για την υλοποίηση του αλγόριθμου σε Built-In Self-Test περιβάλλον ελέγχου ορθής λειτουργίας ακολουθούμενη από την εκτίμηση της απόδοσης αυτής και σύγκριση της με την καλύτερη ως τώρα προτεινόμενη αρχιτεκτονική που υπάρχει στην βιβλιογραφία (Βλέπε Παράρτημα Α). / The thesis consists of two basic parts that apply in the field of VLSI testing of integrated circuits. The first one concludes the work that has been done in the field of VLSI testing using the Transient Fault model and more specifically, analyzes the model and the implementation of a Transition Fault Simulator. The transient fault model moves beyond the scope of the simple stuck-at fault model that is mainly used in the literature, by introducing the concept of time and therefore enables the testing techniques to be more precise and closer to reality. Furthermore, a fault simulator is probably the most important part of the tool chain that is required for the design, implementation and study of vlsi testing techniques and therefore having such a tool available, enables the study of new testing techniques using the transient fault model.
The second part of the thesis summaries the study that took place for a new technique that reduces the test sequences of reseeding-based schemes in the case of Test Set Embedding testing techniques. The proposed algorithm features significant reductions in both the volumes of test data that are required to be stored for the precise regeneration of the test sequences, and the length of test vector sequences that are applied on the circuit under test, in comparison to the classical proposed test techniques that are available in the literature. In addition to the algorithm, a low hardware overhead architecture for implementing the algorithm in Built-in Self-Test environment is presented for which the imposed hardware overhead is confined to just one extra bit per seed, plus one, very small, extra counter in the scheme’s control logic. In the end of the second part, the proposed architecture is compared with the best so far proposed architecture available in the literature (see Appendix A)
|
Page generated in 0.3683 seconds