• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 99
  • 82
  • 68
  • 23
  • 12
  • 7
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 730
  • 291
  • 146
  • 79
  • 72
  • 57
  • 49
  • 48
  • 46
  • 45
  • 40
  • 40
  • 39
  • 38
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

THE ODD-AXIS MODEL: ORTHORHOMBIC FAULT PATTERNS AND THREE-DIMENSIONAL STRAIN FIELDS

Krantz, Robert Warren, Krantz, Robert Warren January 1986 (has links)
Recent observations have highlighted the shortcomings of traditional thinking about faults and fault patterns. The slip model of faulting, developed by Ze'ev Reches, suggests that four sets of faults, arranged in orthorhombic symmetry about the principal strain axes, can accommodate general, three-dimensional strain. Classic conjugate faults are simply a special case of plane strain. Careful analysis of orthorhombic fault patterns and the tenets of the slip model has led to the development of a practical method for decoding the strain significance of fault systems developed in three-dimensional strain fields. The methods are implicit in a model here called the odd-axis model. This new model calls special attention to the odd axis: the one principal strain with sign opposite the other two, assuming a constant volume deformation. Odd-axis medel equations relate fault set geometry to principal strain magnitudes or ratios, the internal friction angle, φ, and the ratio of average fault slip to average spacing between faults of the same set, R. For systems where R < 0.1, the three principal strain ratios are given by tan²α, -sin²α, and -COS²α, where α is the strike of the fault set(s) measured in the plane perpendicular to the odd axis. The model also predicts slip vector orientations as functions of principal strain ratios and orientations. The kinematic implications of the odd-axis model are compatible with those of the slip model. In this first quantitative field test, both fault models are applied to the Chimney Rock array, a system of orthorhombic faults in the northern San Rafael Swell of central Utah. The odd-axis model uses fault plane and slip vector data from Chimney Rock to predict principal strain ratios (ε(y)/ε(x), ε(y)/ε(z), and ε(x)/ε(z)) of .20, -.16, and -.84. These compare extremely well with the observed values, based on fault separation measurements, of .17, -.15, and -.85. The value of ε(y)/ε(z) predicted by the slip model, -.16, matches exactly the value predicted by the odd-axis model and nearly matches the observed value, which is -.15. The success of the field test at Chimney Rock, and the conceptual agreement of both models, suggest that the new theory can accurately relate orthorhombic fault geometries and three-dimensional strain fields. Furthermore, the results underscore how important it is for geologists to recognize the sensitivity of fault geometry and kinematics to three-dimensional strain.
142

Paleoseismic studies of the northern San Andreas Fault at Vedanta marsh site, Olema, California

Zhang, Hongwei, Niemi, Tina M. January 2005 (has links)
Thesis (Ph. D.)--Dept. of Geosciences and School of Computing and Engineering. University of Missouri--Kansas City, 2005. / "A dissertation in geosciences and computer networking." Advisor: Tina M. Niemi. Typescript. Vita. Description based on contents viewed Mar. 12, 2007; title from "catalog record" of the print edition. Includes bibliographical references (leaves 331-341). Online version of the print edition.
143

Detailed structural analysis of detachment faulting near Colossal Cave, Southern Rincon Mountains, Pima County, Arizona

Krantz, Robert Warren January 1983 (has links)
No description available.
144

Fault rocks of the Tanque Verde Mountain decollement zone, Santa Catalina Metamorphic Core Complex, Tucson, Arizona

Di Tullio, Lee Dolores January 1983 (has links)
No description available.
145

Faulting and basin geometry beneath the Great Salt Lake: implications for basin evolution and cenozoic extension

Mohapatra, Gopal Krishna, 1968- January 1996 (has links)
No description available.
146

Tertiary stratigraphy and structure of the southern Lake Range northwest Nevada assessment of kinematic links between strike-slip and normal faults in the northern Walker Lane /

Drakos, Peter S. January 2007 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2007. / "May, 2007." Includes bibliographical references (leaves 155-165). Online version available on the World Wide Web.
147

Evidence for regional extensional faulting at Grey Rocks Ridge, Eastern Klamath Mountains, California /

Fudge, Emily C. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2008. / Two folded maps in pocket. Includes bibliographical references (leaves 90-95). Also available via Humboldt Digital Scholar.
148

Earthquake history, microstructure, and fault frictional properties of near-surface sediments on the Northern San Andreas Fault at Alder Creek, California /

Crawford, Ryan. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2007. / Includes bibliographical references (leaves 64-67). Also available via Humboldt Digital Scholar.
149

Structural and biological analysis of faults in basalts in Sheepshead Mountains, Oregon as an Earth analogue to Mars

Bohanon, Allison 13 May 2022 (has links) (PDF)
Microbial life on Mars is not visible from orbit or by rover cameras, but the fracture networks and scarp morphologies associated with fractures they could live in are measurable. We conducted a field analogue study of 92 normal fault scarps in the Sheepshead Mountains, Oregon to examine the correlation between scarp morphology and vegetation growth in the Steens Basalt. While vegetation is not expected on Mars, the fracture networks that sustain vegetation offer the same micro-environment that would support and protect endoliths. Structural variables were measured in the field and infrared spectra of fault scarps were measured using a handheld multispectral camera and vegetation indices were calculated from these images. Statistical analysis of the scarp morphologic parameters indicate that interconnectedness of fractures is key for elevated vegetation and is represented by a range of parameters. Results support a model for ideal slopes to investigate for preserved biological activity on Mars.
150

Earthquakes in complex fault settings: Examples from the Oregon Cascades, Eastern California Shear Zone, and San Andreas fault

Vadman, Michael John 22 June 2023 (has links)
The surface expression of upper crustal deformation varies widely based on geologic settings. Normal faults within an intra-arc basin, strike-slip faulting within a wide shear zone, and creeping fault behavior all manifest differently and require a variety of techniques for analysis. In this dissertation I studied three different actively deforming regions across a variety of geologic settings. First, I explored the drivers of extension within the La Pine graben in the Oregon Cascades. I mapped >20 new Quaternary faults and conducted paleoseismic trenching, where I found evidence for a mid-late Holocene earthquake on the Twin Lakes maar fault. I suggest that tectonics and not volcanism is responsible for the most recent deformation in the region based on fault geometries and earthquake timings, although more research is needed to tease out finer temporal and genetic relationships between tectonics and volcanism regionally. Second, I investigated the rupture pattern and earthquake history of the Calico fault system in the Eastern California Shear Zone. We mapped ~18 km of continuous rupture, with a mean offset of 2.3 m based on 39 field measurements. We also found evidence for two earthquakes, 0.5 - 1.7 ka and 5.5 - 6.6 ka through paleoseismic trenching. We develop a number of different multifault rupture scenarios using our rupture mapping and rupture scaling relationships to conduct Coulomb stress change modeling for the most recent earthquake on the Calico fault system. We find that the most recent event places regions adjacent to the fault in a stress shadow and may have both delayed the historic Landers and Hector Mine ruptures and prevented triggering of the Calico fault system during those events. Last, I studied the spatial distribution of the southern transition zone of the creeping section of the San Andreas fault at Parkfield, CA to determine if it shifted in response to the M6 2004 Parkfield earthquake. I used an Iterative Closest Point algorithm to find the displacement between two lidar datasets acquired 13 years apart. I compared creep rates measured before the 2004 earthquake to creep rates calculated from my lidar displacement results and found that there is not a discernible change in the overall pattern or distribution of creep as a response to the 2004 earthquake. Peaks within the lidar displacement results indicate complexity in the geometry of fault locking. / Doctor of Philosophy / Fault behavior varies widely across different regions, depending on the type of fault and local geology. In this dissertation I examine three regions with different mechanisms controlling deformation within them. First, I study the relationship between volcanic and tectonic induced faulting in the La Pine graben in the Oregon Cascades. While volcanoes and tectonics can both produce faults within a region, the surface expression of those faults changes depending on the underlying driver. I map > 20 new faults in the La Pine graben. I also conduct paleoseismic trenching on one of the newly identified faults, the Twin Lakes maar fault, and find that its most recent rupture occurred < 7.6 ka. I conclude that tectonism is the dominant driver of faulting within the La Pine graben based on the fault geometries and timing between identified regional earthquakes and volcanism. Second, I explore recent rupture on the Calico fault system in the Eastern California Shear Zone, which is a wide region across eastern California where deformation is distributed among many faults. Faulting in this region is complex, with some earthquakes occurring on multiple connected faults. I conducted a paleoseismic survey to determine the timing of the most recent earthquake(s) on the Calico fault system. This trenching effort found evidence for 1-2 earthquakes, the most recent occurring 0.5 – 1.7 ka. I use the rupture mapping and earthquake timing to develop a number of various rupture scenarios. I use these scenarios as inputs for computer modeling to explore the regional stress changes from these events and find that they reduce the overall stress in the area, elongating the amount of time between regional earthquakes. Last, I examine how creeping fault behavior on the San Andreas fault near Parkfield, CA changes as a response to an earthquake. Creeping behavior is where the two sides of a fault are continuously moving past one another. I examine the spatial distribution of where the San Andreas fault transitions from creeping to locked behavior by differencing two high-resolution lidar topographic datasets taken after the M6 2004 Parkfield earthquake. I compare my displacement results to pre-2004 datasets and conclude that the transition zone did not appreciably change as a result of the earthquake.

Page generated in 0.0441 seconds