11 |
Aplica??o de sistemas multi-classificadores no diagn?stico de falhas em motores de indu??o trif?sicosSantos, Sergio Pinheiro dos 11 April 2009 (has links)
Made available in DSpace on 2014-12-17T14:55:37Z (GMT). No. of bitstreams: 1
SergioPS.pdf: 2376478 bytes, checksum: 7999af148ddd33a9739b28a9fdf05cf3 (MD5)
Previous issue date: 2009-04-11 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key
electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted
winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its
signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data
acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically
generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Na?ves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and
Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification / A manuten??o de equipamentos ? um dos principais fatores de custo no ambiente industrial, sendo de fundamental import?ncia o desenvolvimento de t?cnicas de preven??o de falhas. Os motores de indu??o trif?sicos s?o os equipamentos el?tricos mais utilizados na industria, pois apresentam um baixo custo e boa robustez, entretanto, n?o est?o imunes a diversos tipos de falhas como curto-circuitos nos enrolamentos e quebra de barras rot?ricas. Diversas formas de aquisi??o, processamento e an?lise dos sinais s?o aplicadas para melhorar seu diagn?stico. As t?cnicas mais eficazes utilizam sensores de corrente e a an?lise de sua assinatura. Neste trabalho, s?o apresentadas an?lises a partir destes sensores, sendo esta informa??o processada atrav?s do vetor de Park, que fornece uma boa capacidade de visualiza??o dos padr?es. Visando a obten??o destes padr?es fora do ambiente de opera??o, foi desenvolvida uma metodologia para a constru??o das bases de dados. Para a modelagem da m?quina tamb?m ? aplicada a transforma??o de Park no referencial estacion?rio para solucionar as equa??es diferenciais da m?quina. Detec??o de falhas requer uma an?lise profunda das vari?veis envolvidas e suas influ?ncias, tornando o diagn?stico complexo. Reconhecimento de padr?es permite que sistemas sejam gerados automaticamente, por encontrar padr?es e conceitos nos dados, muitas vezes n?o detectados por especialistas, auxiliando na tomada de decis?es. Algoritmos de classifica??o com diferentes paradigmas de aprendizado como k-vizinhos mais pr?ximos, Redes Neurais, ?rvores de Decis?o e
Na?ve-Bayes s?o utilizados para reconhecer os padr?es dos motores. M?todos de multiclassifica??o s?o empregados para melhorar o desempenho na taxa de erro de classifica??o, s?o examinados os seguintes algoritmos homog?neos: Bagging e Boosting e heterog?neos: Vote, Stacking e Stacking C. Nos resultados ? poss?vel notar a efic?cia do modelo constru?do para simular as falhas assim como dos algoritmos multiclassificadores para a classifica??o de falhas
|
12 |
Building Energy Efficiency Improvement and Thermal Comfort DiagnosisShi, Hongsen 18 June 2019 (has links)
No description available.
|
13 |
Fault Detection and Identification of Vehicle Starters and Alternators Using Machine Learning TechniquesSeddik, Essam January 2016 (has links)
Artificial Intelligence in Automotive Industry / Cost reduction is one of the main concerns in industry. Companies invest considerably for better performance in end-of-line fault diagnosis systems. A common strategy is to use data obtained from existing instrumentation. This research investigates the challenge of learning from historical data that have already been collected by companies. Machine learning is basically one of the most common and powerful techniques of artificial intelligence that can learn from data and identify fault features with no need for human interaction. In this research, labeled sound and vibration measurements are processed into fault signatures for vehicle starter motors and alternators. A fault detection and identification system has been developed to identify fault types for end-of-line testing of motors.
However, labels are relatively difficult to obtain, expensive, time consuming and require experienced humans, while unlabeled samples needs less effort to collect. Thus, learning from unlabeled data together with the guidance of few labels would be a better solution. Furthermore, in this research, learning from unlabeled data with absolutely no human intervention is also implemented and discussed as well. / Thesis / Master of Applied Science (MASc)
|
14 |
On induction machine faults detection using advanced parametric signal processing techniques / Contribution à la détection de défauts dans les machines asynchrones à l’aide de techniques paramétriques de traitement de signalTrachi, Youness 22 November 2017 (has links)
L’objectif de ces travaux de thèse est de développer des architectures fiables de surveillance et de détection des défauts d’une machine asynchrone basées sur des techniques paramétriques de traitement du signal. Pour analyser et détecter les défauts, un modèle paramétrique du courant statorique en environnement stationnaire est proposé. Il est supposé être constitué de plusieurs sinusoïdes avec des paramètres inconnus dans le bruit. Les paramètres de ce modèle sont estimés à l’aide des techniques paramétriques telles que les estimateurs spectraux de type sous-espaces (MUSIC et ESPRIT) et l’estimateur du maximum de vraisemblance. Un critère de sévérité des défauts, basé sur l’estimation des amplitudes des composantes fréquentielles du courant statorique, est aussi proposé pour évaluer le niveau de défaillance de la machine. Un nouveau détecteur des défauts est aussi proposé en utilisant la théorie de détection. Il est principalement basé sur le test du rapport de vraisemblance généralisé avec un signal et un bruit à paramètres inconnus. Enfin, les techniques paramétriques proposées ont été évaluées à l’aide de signaux de courant statoriques expérimentaux de machines asynchrones en considérant les défauts de roulements et les ruptures de barres rotoriques. L’analyse des résultats expérimentaux montre clairement l’efficacité et la capacité de détection des techniques paramétriques proposées. / This Ph.D. thesis aims to develop reliable and cost-effective condition monitoring and faults detection architectures for induction machines. These architectures are mainly based on advanced parametric signal processing techniques. To analyze and detect faults, a parametric stator current model under stationary conditions has been considered. It is assumed to be multiple sinusoids with unknown parameters in noise. This model has been estimated using parametric techniques such as subspace spectral estimators and maximum likelihood estimator. A fault severity criterion based on the estimation of the stator current frequency component amplitudes has also been proposed to determine the induction machine failure level. A novel faults detector based on hypothesis testing has been also proposed. This detector is mainly based on the generalized likelihood ratio test detector with unknown signal and noise parameters. The proposed parametric techniques have been evaluated using experimental stator current signals issued from induction machines under two considered faults: bearing and broken rotor bars faults.Experimental results show the effectiveness and the detection ability of the proposed parametric techniques.
|
Page generated in 0.0956 seconds