1 |
Fluorescence based studies on neuronal processesSchröder, Sabrina 17 October 2014 (has links)
No description available.
|
2 |
The fluorescence behavior of B-phycoerythrin single molecules in colloid surroundingLee, Wei-lung 01 August 2007 (has links)
The thesis aims to study the motion of individual fluorescent molecules in the gel environments, and applies to the sensitive electrophoretic and dielectrophoretic studies. Firstly, dye molecules (Rhodamine B and DiI) are dispersed, and investigate the individual fluorescent spots. Later on, we study the motion of individual B-phycoerythrin molecules under external electrical field driving.
Due to the porosity, agarose gel is used to contain the liquid, and the dye molecules can freely move within the pores. Thus, one can easily observe the motion of individual dye molecules under high numerical aperture objectives. B-phycoerythrin is chosen for the high extinction coefficient, native charge, and good fluorescent properties. Our results indicate most dye molecules are attached in the rigid structure of the gel. Only very limited molecular motions are observed.
Moreover, we study the dielectrophoretic interaction of the dye molecules. Nano-electrodes are fabricated by electrolysis to have sub-micron aperture silver tips. Due to the high gradient of the electric field, it is used to have strong enough attractive forces around the apex of the tip, to overcome the thermal fluctuations. It allows us further trapping and manipulating small non-charged objects, up to single dye molecules.
|
3 |
Characterizing a Single Plane Illumination Microscope for Imaging Fluorescence Correlation SpectroscopyMahmood, M. Ahmad January 2020 (has links)
In many systems, in vitro or in vivo, it has become important to experimentally obtain
dynamical information at many different positions simultaneously. This is a challenge
as conventionally, dynamic information in biological systems is probed with a confocal
microscope to perform either fluorescence correlation spectroscopy (FCS) or fluorescence
recovery after photobleaching (FRAP), which can be damaging due to phototoxicity, and
yields information at a single position. Advances in camera sensors have allowed their
use in place of single point detectors and the implement of imaging FCS by way of single
plane illumination microscopy (SPIM). In this modality, a light sheet with a thickness of
only a few microns illuminates the sample and the fluorescence is projected orthogonally
onto the camera chip. By imaging small regions of interest at a very high frame rate, we
can determine dynamic parameters such as diffusion coefficients and local concentrations
in a 2D array of pixels. In this thesis, I discuss the theoretical background, hardware
setup, design and characterization of a SPIM which I have built in order to perform
imaging FCS. / Thesis / Master of Science (MSc)
|
4 |
Advanced Fluorescence Correlation Techniques to Study Membrane Dynamics / Neuartige Fluoreszenz-Korrelations-Techniken zur Untersuchung von MembrandynamikRies, Jonas 27 August 2008 (has links) (PDF)
Fluorescence Correlation Spectroscopy (FCS) is a powerful tool to measure important physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in solution and in membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we develop several novel implementations of FCS which overcome these limitations and facilitate accurate and quantitative determination of dynamic parameters in membranes. Two-focus FCS with camera-detection allows for accurate and calibration-free determination of diffusion coefficients. Confocal FCS using a laser scanning microscope provides an unprecedented positioning accuracy which enabled us to study, for the first time with FCS, dynamics in bacterial membranes. Scanning FCS with a scan path perpendicular to the membrane plane allows to correct for instabilities permitting long measurement times necessary to study slow diffusion. It can easily be extended to measure calibration-free diffusion coefficients with two-focus scanning FCS and to quantify binding with dual color scanning FCS. Spectral crosstalk can be avoided effectively by using alternating excitation. Using this method we were able to perform measurements in systems previously not accessible with FCS, such as yeast cell membranes or membranes of living zebrafish embryos. Line-scan FCS with a scan path in the membrane plane uses the parallel acquisition along the line to increase the statistical accuracy and decrease the measurement times. Knowledge of the scan speed serves as an internal calibration, enabling accurate diffusion and concentration measurements within seconds, hardly affected by photobleaching. Both realizations of scanning FCS can be easily implemented with commercial laser scanning microscopes. Often, a fluorescence background around the membrane cannot be avoided. The high surface selectivity needed in this case can be achieved efficiently by using a novel objective for FCS, the supercritical angle objective, which produces a very flat and laterally confined detection volume. Another technique with similar surface selectivity is FCS with total internal reflection excitation (TIRFCS). Due to the lack of a correct model, the accurate analysis of TIR-FCS data was previously not possible. In this work we develop such a model, enabling quantitative measurements of membrane dynamics with TIR-FCS. The novel FCS techniques developed here will have a high impact on the use of FCS to address key questions in biological systems, previously inaccessible by other methods. / Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine mächtige Methode, um wichtige physikalische Parameter wie Konzentrationen, Diffusionskoeffizienten, Diffusionsarten oder Bindungsparameter in Lösung und in Modell- oder Zellmembranen zu bestimmen. In nichtidealen Systemen ist FCS fehleranfällig. In dieser Arbeit entwickeln wir mehrere neuartige Realisierungen von FCS, welche diese Fehlerquellen umgehen und die genaue und quantitative Messung dynamischer Parameter in Membranen ermöglichen. Zwei-Fokus FCS mit Kamera-Detektion erlaubt eine genaue und kalibrationsfreie Messung von Diffusionskoeffizienten. Konfokale FCS mit einem Laserscanningmikroskop besitzt eine bislang unerreichte Positionsgenauigkeit, welche uns erstmals dynamische Messungen in Bakterienmembranen mit FCS ermöglichte. Scanning FCS mit einem Scanweg senkrecht zur Membran ermöglicht eine Korrektur von Instabilitäten und damit lange Messzeiten, die zur Bestimmung langsamer Diffusionskoeffizienten notwendig sind. Eine Erweiterung zur kalibrationsfreien Messung von Diffusionskoeffizienten mit Zwei-Fokus Scanning FCS und von Bindungsparametern mit Zwei-Farben Scanning FCS ist einfach. Mit diesen Methoden konnten wir in Systemen messen, die bislang FCS nicht zugänglich waren, so in Hefezellmembranen oder in Membranen lebender Zebrafischembryonen. Line-scan FCS besitzt einen Scanweg parallel zur Membran. Die parallele Messung entlang der ganzen Linie führt zu einer deutlichen Verbesserung der Statistik und damit zu kurzen Messzeiten. Die Kenntnis der Scangeschwindigkeit dient einer internen Kalibration und erlaubt eine akkurate Bestimmung von Diffusionskoeffizienten und Konzentrationen innerhalb weniger Sekunden, kaum beeinflusst vom Bleichen von Fluorophoren. Beide Arten von Scanning FCS können mit einem kommerziellen Laserscanningmikroskop realisiert werden. Häufig kann bei FCS Messungen ein fluoreszierender Hintergrund nicht vermieden werden. Hier ist eine hohe Oberflächenselektivitiät nötig, welche effizient mit einem neuartigen Objektiv erreicht werden kann. Dieses Supercritical Angle-Objektiv erzeugt ein sehr flaches und lateral begrenztes Detektionsvolumen. Eine weitere Methode mit einer ähnlich guten Oberflächenselektivität ist FCS mit Anregung über totale interne Reflektion (TIR-FCS). Bislang war eine quantitative Analyse der TIR-FCS Daten kaum möglich, da keine ausreichend genaue theoretische Beschreibung existierte. In dieser Arbeit entwickeln wir ein akkurates Modell, welches quantitative Messungen mit TIR-FCS erlaubt. Die hier entwickelten neuartgien FCS-Techniken ermöglichen die Untersuchung biologischer Fragestellungen, welche bislang keiner anderen Methode zugänglich sind.
|
5 |
Development of a Low Cost Autopilot System for Unmanned Aerial VehiclesOrtiz, Jose 10 August 2010 (has links)
The purpose of this thesis was to develop a low cost autonomous flight control system for small unmanned aerial vehicles with the aim to support collaborative systems. A low cost hardware solution was achieved by careful selection of sensors, integration of hardware subsystems, and the use of new microcontroller technologies. Flight control algorithms to guide a vehicle though waypoint based flight paths and loiter about a point were implemented using direction fields. A hardware in the loop simulator was developed to ensure proper operation of all hardware and software components prior to flight testing. The resulting flight control system achieved stable and accurate flight while reducing the total system cost to less than $250.
|
6 |
Development of a Flexible FPGA-Based Platform for Flight Control System ResearchDeMott, Robert 08 December 2010 (has links)
This work is part of ongoing research conducted at Virginia Commonwealth University relating to unmanned aerial vehicles. The primary objective of this thesis was to develop a flexible, high-performance autopilot platform in order to facilitate research on advanced flight control algorithms. A dual FPGA-based system architecture utilizing a stacked, multi-board design was created to meet this goal. Processing tasks were split between the two FPGA devices, allowing for improved system timing and increased throughput. A combination of analog and digital filtering techniques were employed in the new system, resulting in enhanced sensor accuracy and precision compared to the previous generation autopilot system. Several important improvements to the safety and reliability of the overall system were also achieved.
|
7 |
The investigation of the relation between conformation and spectroscopic properties of MDMO-PPV dilute solutionWang, Yen-sheng 26 August 2008 (has links)
Luminescent conjugated polymers are widely used in organic optoelectronics. The device is fabricated by spin coating the polymer solutions into thin films. It is important to understand the chain conformation in the solution phase, which is mainly determined by the solubility properties of the solutes and the solvents. The purpose of this study is focused on the aggregate structures of MDMO-PPV polymer in the solution mixing of toluene, heptanes, and decahydronaphthalene. Compared to the polymer in toluene solution, the absorption and fluorescence spectra in the mixing solutions are red-shifted, which indicates the aggregation between polymer chains.
In order to identify the aggregation is inter-chain or intra-chain effect, we perform concentration dependent measurements of the fluorescence spectra down to 10-10 M. Our results suggest that inter-chain aggregation is the major influence in the concentration.
Since the intra-chain aggregation is strongly influenced by polymer concentration, we carry out the experiments to identify how the inter-chain effect influences at even lower concentrations. Fluorescence correlation spectroscopy (FCS) is used to determine the particle size at 10-12M concentration, which relates directly to the aggregation size. The results show that particle size in the poor solution is larger than that in the good solution. Therefore, we conclude that the change of the fluorescence spectra is caused by the inter-chain aggregation even at the concentration to 10-12M.
|
8 |
Vliv velikosti částic na mikroreologické experimenty pomocí fluorescenční korelační spektroskopie / Influence of particle size on microreology experiments using fluorescence correlation spectroscopyValovič, Stela January 2019 (has links)
This diploma thesis deals with microrheology measured via the fluorescence correlation spectroscopy. As microrheological probes, fluorescently marked nanoparticles of 5 sizes in the range of 10-100 nm, were used. The particles had been immersed in a variety of concentrated glycerol solutions and agarose gels of different concentrations, and the FCS measurement revealed a diffusion coefficient of individual particles in each environment. Based on the coefficient, the viscosity of the glycerol needed to stop the particles could be determined. Particles of 10 nm size were not stopped even by the 100 wt% glycerol. In the case of the agarose gels, a combination of higher agarose concentration and larger particles resulted in an increase in the diffusion coefficient to an unlikely high value. This was caused probably by an agarose autofluorescence and the value indicates stopping of the particles in the given agarose gel. Later, the data acquired by the FCS measurement were converted to MSD curves using MATLAB software. The thesis discusses the influence of the experimental parameters on the shape of the MSD curve. The results showed that the number of particles and autocorrelation function have the most significant effect.
|
9 |
Advanced Fluorescence Correlation Techniques to Study Membrane DynamicsRies, Jonas 14 August 2008 (has links)
Fluorescence Correlation Spectroscopy (FCS) is a powerful tool to measure important physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in solution and in membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we develop several novel implementations of FCS which overcome these limitations and facilitate accurate and quantitative determination of dynamic parameters in membranes. Two-focus FCS with camera-detection allows for accurate and calibration-free determination of diffusion coefficients. Confocal FCS using a laser scanning microscope provides an unprecedented positioning accuracy which enabled us to study, for the first time with FCS, dynamics in bacterial membranes. Scanning FCS with a scan path perpendicular to the membrane plane allows to correct for instabilities permitting long measurement times necessary to study slow diffusion. It can easily be extended to measure calibration-free diffusion coefficients with two-focus scanning FCS and to quantify binding with dual color scanning FCS. Spectral crosstalk can be avoided effectively by using alternating excitation. Using this method we were able to perform measurements in systems previously not accessible with FCS, such as yeast cell membranes or membranes of living zebrafish embryos. Line-scan FCS with a scan path in the membrane plane uses the parallel acquisition along the line to increase the statistical accuracy and decrease the measurement times. Knowledge of the scan speed serves as an internal calibration, enabling accurate diffusion and concentration measurements within seconds, hardly affected by photobleaching. Both realizations of scanning FCS can be easily implemented with commercial laser scanning microscopes. Often, a fluorescence background around the membrane cannot be avoided. The high surface selectivity needed in this case can be achieved efficiently by using a novel objective for FCS, the supercritical angle objective, which produces a very flat and laterally confined detection volume. Another technique with similar surface selectivity is FCS with total internal reflection excitation (TIRFCS). Due to the lack of a correct model, the accurate analysis of TIR-FCS data was previously not possible. In this work we develop such a model, enabling quantitative measurements of membrane dynamics with TIR-FCS. The novel FCS techniques developed here will have a high impact on the use of FCS to address key questions in biological systems, previously inaccessible by other methods. / Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine mächtige Methode, um wichtige physikalische Parameter wie Konzentrationen, Diffusionskoeffizienten, Diffusionsarten oder Bindungsparameter in Lösung und in Modell- oder Zellmembranen zu bestimmen. In nichtidealen Systemen ist FCS fehleranfällig. In dieser Arbeit entwickeln wir mehrere neuartige Realisierungen von FCS, welche diese Fehlerquellen umgehen und die genaue und quantitative Messung dynamischer Parameter in Membranen ermöglichen. Zwei-Fokus FCS mit Kamera-Detektion erlaubt eine genaue und kalibrationsfreie Messung von Diffusionskoeffizienten. Konfokale FCS mit einem Laserscanningmikroskop besitzt eine bislang unerreichte Positionsgenauigkeit, welche uns erstmals dynamische Messungen in Bakterienmembranen mit FCS ermöglichte. Scanning FCS mit einem Scanweg senkrecht zur Membran ermöglicht eine Korrektur von Instabilitäten und damit lange Messzeiten, die zur Bestimmung langsamer Diffusionskoeffizienten notwendig sind. Eine Erweiterung zur kalibrationsfreien Messung von Diffusionskoeffizienten mit Zwei-Fokus Scanning FCS und von Bindungsparametern mit Zwei-Farben Scanning FCS ist einfach. Mit diesen Methoden konnten wir in Systemen messen, die bislang FCS nicht zugänglich waren, so in Hefezellmembranen oder in Membranen lebender Zebrafischembryonen. Line-scan FCS besitzt einen Scanweg parallel zur Membran. Die parallele Messung entlang der ganzen Linie führt zu einer deutlichen Verbesserung der Statistik und damit zu kurzen Messzeiten. Die Kenntnis der Scangeschwindigkeit dient einer internen Kalibration und erlaubt eine akkurate Bestimmung von Diffusionskoeffizienten und Konzentrationen innerhalb weniger Sekunden, kaum beeinflusst vom Bleichen von Fluorophoren. Beide Arten von Scanning FCS können mit einem kommerziellen Laserscanningmikroskop realisiert werden. Häufig kann bei FCS Messungen ein fluoreszierender Hintergrund nicht vermieden werden. Hier ist eine hohe Oberflächenselektivitiät nötig, welche effizient mit einem neuartigen Objektiv erreicht werden kann. Dieses Supercritical Angle-Objektiv erzeugt ein sehr flaches und lateral begrenztes Detektionsvolumen. Eine weitere Methode mit einer ähnlich guten Oberflächenselektivität ist FCS mit Anregung über totale interne Reflektion (TIR-FCS). Bislang war eine quantitative Analyse der TIR-FCS Daten kaum möglich, da keine ausreichend genaue theoretische Beschreibung existierte. In dieser Arbeit entwickeln wir ein akkurates Modell, welches quantitative Messungen mit TIR-FCS erlaubt. Die hier entwickelten neuartgien FCS-Techniken ermöglichen die Untersuchung biologischer Fragestellungen, welche bislang keiner anderen Methode zugänglich sind.
|
10 |
STED-fluorescence correlation spectroscopy for dynamic observations in cell biology : from theoretical to practical approaches / STED-spectroscopie de corrélation de fluorescence pour des observations dynamiques en biologie cellulaire : de l'approche théorique à l'approche pratiqueWang, Ruixing 06 June 2018 (has links)
Les techniques de super-résolution offrent un nouvel aperçu de la description de l'organisation moléculaire dynamique de la membrane plasmique. Parmi ces techniques, la microscopie par déplétion d'émission stimulée (stimulated emission depletion, STED) dépasse la limite de diffraction optique et atteint une résolution de quelques dizaines de nanomètres. Il est une technique polyvalente qui peut être combinée avec d'autres techniques telles que la spectroscopie par corrélation de fluorescence (fluorescence correlation spectroscopy, FCS), fournissant des résolutions spatiales et temporelles élevées pour explorer les processus dynamiques qui se produisent dans les cellules vivantes. Ce projet de doctorat vise à mettre en œuvre un microscope STED, puis à combiner ce module STED avec la technique FCS pour les applications biologiques. Des études théoriques du STED et de la technique combinant STED et FCS ont permis dans les aspects spatio-temporels. Une solution analytique pour la fonction d'autocorrélation FCS a été dérivée dans l'état de déplétion STED incomplet. et un nouveau modèle d'ajustement FCS a été proposé. La méthode de variation du volume d’observation FCS (spot variation FCS, svFCS) a démontré sa capacité à identifier la présence de nanodomaines limitant la diffusion latérale des molécules dans la membrane plasmique. L’approche STED-FCS permet d’étendre l’application de la svFCS à l'échelle nanométrique afin d’évaluer la persistance plus ou moins importante de tels nanodomaines. Dans ce contexte, des simulations préliminaires de Monte Carlo ont été réalisées figurant des molécules diffusant en présence d'auto-assemblage/désassemblage dynamique des nanodomaines. / Super-resolution techniques offer new insight into the description of the dynamic molecular organization at the plasma membrane. Among these techniques, the stimulated emission depletion (STED) microscopy breaks the optical diffraction limit and reaches the resolution of tens of nanometer. It is a versatile setup that can be combined with other techniques such as fluorescence correlation spectroscopy (FCS), providing both high spatial and temporal resolutions to explore dynamic processes occurring in live cells. This PhD project aims at implementing a STED microscope, and then at combining this STED module with FCS technique for biological applications. Detailed theoretical studies on STED and the combined STED-FCS technique in spatio-temporal aspects were performed. An analytical solution for FCS autocorrelation function was derived in the condition of incomplete STED depletion and a new FCS fitting model was proposed to overcome this problem. The spot variation FCS (svFCS) method has demonstrated its capability to identify the presence of nanodomains constraining the lateral diffusion of molecules at the plasma membrane. The STED-FCS can extend the svFCS approach to the nanoscale evaluating the long-lasting existence of such nanodomains. Within this frame, preliminary Monte Carlo simulations were conducted mimicking molecules diffusing in the presence of dynamic self-assembling/disassembling nanodomains.
|
Page generated in 0.0453 seconds