• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electron multiplying CCD – based detection in Fluorescence Correlation Spectroscopy and measurements in living zebrafish embryos / Elektronenvervielfachungs-CCD-basierte Detektion in der Fluoreszenz-Korrelations-Spektroskopie und Messungen in lebenden Zebrafisch-Embryonen

Burkhardt, Markus 07 October 2010 (has links) (PDF)
Fluorescence correlation spectroscopy (FCS) is an ultra-sensitive optical technique to investigate the dynamic properties of ensembles of single fluorescent molecules in solution. It is in particular suited for measurements in biological samples. High sensitivity is obtained by employing confocal microscopy setups with diffraction limited small detection volumes, and by using single-photon sensitive detectors, for example avalanche photo diodes (APD). However, fluorescence signal is hence typically collected from a single focus position in the sample only, and several measurements at different positions have to be performed successively. To overcome the time-consuming successive FCS measurements, we introduce electron multiplying CCD (EMCCD) camera-based spatially resolved detection for FCS. With this new detection method, multiplexed FCS measurements become feasible. Towards this goal, we perform FCS measurements with two focal volumes. As an application, we demonstrate spatial cross-correlation measurements between the two detection volumes, which allow to measure calibration-free diffusion coefficients and direction-sensitive processes like molecular flow in microfluidic channels. FCS is furthermore applied to living zebrafish embryos, to investigate the concentration gradient of the morphogen fibroblast growth factor 8 (Fgf8). It is shown by one-focus APD-based and two-focus EMCCD-based FCS, that Fgf8 propagates largely by random diffusion through the extracellular space in developing tissue. The stable concentration gradient is shown to arise from the equilibrium between a local morphogen production and the sink function of the receiving cells by receptor-mediated removal from the extracellular space. The study shows the applicability of FCS to whole model organisms. Especially in such dynamically changing systems in vivo, the perspective of fast parallel FCS measurements is of great importance. In this work, we exemplify parallel, spatially resolved FCS by utilizing an EMCCD camera. The approach, however, can be easily adapted to any other class of two-dimensional array detector. Novel generations of array detectors might become available in the near future, so that multiplexed spatial FCS could then emerge as a standard extension to classical one-focus FCS. / Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine hochempfindliche optische Methode, um die dynamischen Eigenschaften eines Ensembles von einzelnen, fluoreszierenden Molekülen in Lösung zu erforschen. Sie ist insbesondere geeignet für Messungen in biologischen Proben. Die hohe Empfindlichkeit wird erreicht durch Verwendung konfokaler Mikroskop-Aufbauten mit beugungsbegrenztem Detektionsvolumen, und durch Messung der Fluoreszenz mit Einzelphotonen-empfindlichen Detektoren, zum Beispiel Avalanche-Photodioden (APD). Dadurch wird das Fluoreszenzsignal allerdings nur von einer einzelnen Fokusposition in der Probe eingesammelt, und mehrfache Messungen an verschiedenen Positionen in der Probe müssen nacheinander durchgeführt werden. Um die zeitaufwendigen, aufeinanderfolgenden FCS-Einzelmessungen zu überwinden, entwickeln wir in dieser Arbeit Elektronenvervielfachungs-CCD (EMCCD) Kamera-basierte räumlich aufgelöste Detektion für FCS. Mit dieser neuartigen Detektionsmethode werden Multiplex-FCS Messungen möglich. Darauf abzielend führen wir FCS Messungen mit zwei Detektionsvolumina durch. Als Anwendung nutzen wir die räumliche Kreuzkorrelation zwischen dem Signal beider Fokalvolumina. Sie ermöglicht die kalibrationsfreie Bestimmung von Diffusionskoeffizienten und die Messung von gerichteter Bewegung, wie zum Beispiel laminarem Fluss in mikrostrukturierten Kanälen. FCS wird darüber hinaus angewendet auf Messungen in lebenden Zebrafischembryonen, um den Konzentrationsgradienten des Morphogens Fibroblasten-Wachstumsfaktor 8 (Fgf8) zu untersuchen. Mit Hilfe von APD-basierter ein-Fokus FCS und EMCCD-basierter zwei-Fokus FCS zeigen wir, dass Fgf8 hauptsächlich frei diffffundiert im extrazellulären Raum des sich entwickelnden Embryos. Der stabile Konzentrationsgradient entsteht durch ein Gleichgewicht von lokaler Morphogenproduktion und globalem Morphogenabbau durch Rezeptor vermittelte Entfernung aus dem extrazellulären Raum. Die Studie zeigt die Anwendbarkeit von FCS in ganzen Modell-Organismen. Gerade in diesen sich dynamisch ändernden Systemen in vivo ist die Perspektive schneller, paralleler FCS-Messungen von großer Bedeutung. In dieser Arbeit wird räumlich aufgelöste FCS am Beispiel einer EMCCD Kamera durchgeführt. Die Herangehensweise ist jedoch einfach übertragbar auf jede andere Art von zwei-dimensionalem Flächendetektor. Neuartige Flächendetektoren könnten in naher Zukunft verfügbar sein. Dann könnte räumlich aufgelöste Multiplex-FCS eine standardisierte Erweiterung zur klassischen ein-Fokus FCS werden.
2

Advanced Fluorescence Correlation Techniques to Study Membrane Dynamics / Neuartige Fluoreszenz-Korrelations-Techniken zur Untersuchung von Membrandynamik

Ries, Jonas 27 August 2008 (has links) (PDF)
Fluorescence Correlation Spectroscopy (FCS) is a powerful tool to measure important physical quantities such as concentrations, diffusion coefficients, diffusion modes or binding parameters, both in solution and in membranes. However, it can suffer from severe artifacts, especially in non-ideal systems. Here we develop several novel implementations of FCS which overcome these limitations and facilitate accurate and quantitative determination of dynamic parameters in membranes. Two-focus FCS with camera-detection allows for accurate and calibration-free determination of diffusion coefficients. Confocal FCS using a laser scanning microscope provides an unprecedented positioning accuracy which enabled us to study, for the first time with FCS, dynamics in bacterial membranes. Scanning FCS with a scan path perpendicular to the membrane plane allows to correct for instabilities permitting long measurement times necessary to study slow diffusion. It can easily be extended to measure calibration-free diffusion coefficients with two-focus scanning FCS and to quantify binding with dual color scanning FCS. Spectral crosstalk can be avoided effectively by using alternating excitation. Using this method we were able to perform measurements in systems previously not accessible with FCS, such as yeast cell membranes or membranes of living zebrafish embryos. Line-scan FCS with a scan path in the membrane plane uses the parallel acquisition along the line to increase the statistical accuracy and decrease the measurement times. Knowledge of the scan speed serves as an internal calibration, enabling accurate diffusion and concentration measurements within seconds, hardly affected by photobleaching. Both realizations of scanning FCS can be easily implemented with commercial laser scanning microscopes. Often, a fluorescence background around the membrane cannot be avoided. The high surface selectivity needed in this case can be achieved efficiently by using a novel objective for FCS, the supercritical angle objective, which produces a very flat and laterally confined detection volume. Another technique with similar surface selectivity is FCS with total internal reflection excitation (TIRFCS). Due to the lack of a correct model, the accurate analysis of TIR-FCS data was previously not possible. In this work we develop such a model, enabling quantitative measurements of membrane dynamics with TIR-FCS. The novel FCS techniques developed here will have a high impact on the use of FCS to address key questions in biological systems, previously inaccessible by other methods. / Fluoreszenz-Korrelations-Spektroskopie (FCS) ist eine mächtige Methode, um wichtige physikalische Parameter wie Konzentrationen, Diffusionskoeffizienten, Diffusionsarten oder Bindungsparameter in Lösung und in Modell- oder Zellmembranen zu bestimmen. In nichtidealen Systemen ist FCS fehleranfällig. In dieser Arbeit entwickeln wir mehrere neuartige Realisierungen von FCS, welche diese Fehlerquellen umgehen und die genaue und quantitative Messung dynamischer Parameter in Membranen ermöglichen. Zwei-Fokus FCS mit Kamera-Detektion erlaubt eine genaue und kalibrationsfreie Messung von Diffusionskoeffizienten. Konfokale FCS mit einem Laserscanningmikroskop besitzt eine bislang unerreichte Positionsgenauigkeit, welche uns erstmals dynamische Messungen in Bakterienmembranen mit FCS ermöglichte. Scanning FCS mit einem Scanweg senkrecht zur Membran ermöglicht eine Korrektur von Instabilitäten und damit lange Messzeiten, die zur Bestimmung langsamer Diffusionskoeffizienten notwendig sind. Eine Erweiterung zur kalibrationsfreien Messung von Diffusionskoeffizienten mit Zwei-Fokus Scanning FCS und von Bindungsparametern mit Zwei-Farben Scanning FCS ist einfach. Mit diesen Methoden konnten wir in Systemen messen, die bislang FCS nicht zugänglich waren, so in Hefezellmembranen oder in Membranen lebender Zebrafischembryonen. Line-scan FCS besitzt einen Scanweg parallel zur Membran. Die parallele Messung entlang der ganzen Linie führt zu einer deutlichen Verbesserung der Statistik und damit zu kurzen Messzeiten. Die Kenntnis der Scangeschwindigkeit dient einer internen Kalibration und erlaubt eine akkurate Bestimmung von Diffusionskoeffizienten und Konzentrationen innerhalb weniger Sekunden, kaum beeinflusst vom Bleichen von Fluorophoren. Beide Arten von Scanning FCS können mit einem kommerziellen Laserscanningmikroskop realisiert werden. Häufig kann bei FCS Messungen ein fluoreszierender Hintergrund nicht vermieden werden. Hier ist eine hohe Oberflächenselektivitiät nötig, welche effizient mit einem neuartigen Objektiv erreicht werden kann. Dieses Supercritical Angle-Objektiv erzeugt ein sehr flaches und lateral begrenztes Detektionsvolumen. Eine weitere Methode mit einer ähnlich guten Oberflächenselektivität ist FCS mit Anregung über totale interne Reflektion (TIR-FCS). Bislang war eine quantitative Analyse der TIR-FCS Daten kaum möglich, da keine ausreichend genaue theoretische Beschreibung existierte. In dieser Arbeit entwickeln wir ein akkurates Modell, welches quantitative Messungen mit TIR-FCS erlaubt. Die hier entwickelten neuartgien FCS-Techniken ermöglichen die Untersuchung biologischer Fragestellungen, welche bislang keiner anderen Methode zugänglich sind.

Page generated in 0.0337 seconds