Spelling suggestions: "subject:"featurebased"" "subject:"features.based""
51 |
On the suitability of conic sections in a single-photo resection, camera calibration, and photogrammetric triangulationSeedahmed, Gamal H. 03 February 2004 (has links)
No description available.
|
52 |
The use of reciprocal interdependencies management (RIM) to support decision making during early stages designShelton, Mona C 03 May 2008 (has links)
Published works cite that 70-80% of the total cost of a product is established during conceptual design, and that improvements in time-to-market, quality, affordability, and global competitiveness require the development of better approaches to assist decision-making during the early stages of product design, as well as facilitate enterprise knowledge management and reuse. For many years, concurrent engineering and teaming have been viewed as “the answer” to product development woes, but studies reveal teaming is not sufficient to handle the task complexities of product development and the long-term goal of enterprise learning. The work of Roberto Verganti provides new insights with regard to reciprocal interdependencies (RIs), feedforward planning, selective anticipation in the context of improving teaming and concurrent engineering, as well as enterprise learning, knowledge management, reuse. In this research, reciprocal interdependencies management (RIM) is offered as a means of addressing product development and concurrent engineering issues occurring in the early stages of design. RIM is combination of Verganti’s concepts, a conceptual RIs structure, new RIM-application strategies, RIM-diagramming, and a conceptual RIM-based decisions support system, which come together to form a vision of a RIM-based enterprise knowledge management system. The conceptual RIM-based DSS is presented using the specific case of supporting a working-level integrated product team (IPT) engaged in the design of an aircraft bulkhead. A qualitative assessment tool is used to compare RIM to other approaches in the literature, and initial results are very favorable.
|
53 |
Feature-based Mini Unmanned Air Vehicle Video Euclidean Stabilization with Local MosaicsGerhardt, Damon Dyck 01 February 2007 (has links) (PDF)
Video acquired using a camera mounted on a mini Unmanned Air Vehicle (mUAV) may be very helpful in Wilderness Search and Rescue and many other applications but is commonly plagued with limited spatial and temporal field of views, distractive jittery motions, disorienting rotations, and noisy and distorted images. These problems collectively make it very difficult for human viewers to identify objects of interest as well as infer correct orientations throughout the video. In order to expand the temporal and spatial field of view, stabilize, and better orient users of noisy and distorted mUAV video, a method is proposed of estimating in software and in real time the relative motions of each frame to the next by tracking a small subset of features within each frame to the next. Using these relative motions, a local Euclidean mosaic of the video can be created and a curve can be fit to the video's accumulative motion path to stabilize the presentations of both the video and the local Euclidean mosaic. The increase in users' abilities to perform common search-and-rescue tasks of identifying objects of interest throughout the stabilized and locally mosaiced mUAV video is then evaluated. Finally, a discussion of remaining limitations is presented along with some possibilities for future work.
|
54 |
2.5D Feature Based Correspondence Matching for Part LocalizationAsplund, Hugo January 2024 (has links)
In the area of automation, object localization stands as a fundamental functionalitywith widespread applicability. This master’s thesis focuses on a specificapplication involving robot object picking. Given recent advancements in depthcamera technology, there is a high interest in exploring the synergistic integrationof both 2D and 3D data to address challenges such as missing data, occlusion,varying viewing angles, and diverse lighting conditions. This master’s thesis presents the development of two distinct algorithms for arbitraryshaped template matching using 2D image features. Both algorithms leveragefeatures detected by the GoodFeaturesToTrack algorithm and described withScale-invariant feature transform (SIFT) descriptors. While an initial sliding windowmatcher was developed, it was ultimately discarded due to extensive timerequirements. Instead, a correspondence matcher was created, offering two variations:one exclusively employing 2D image data for matching and another utilizing3D coordinates to enhance matching accuracy. The correspondence matchingalgorithms showed similar strengths and weaknesses. They demonstrated proficiencyin handling scenarios characterized by occlusion, minor tilt, and varyingscaling. Both variations struggled with objects 90-degrees rotated and could inmany cases not find them. The findings suggest that the developed feature-based correspondence matchingalgorithm holds promise for object localization in industrial picking applications,although with limitations concerning objects with substantial rotationdifferences. Addressing the challenge of large rotations is recommended for enhancingthe algorithm’s robustness, followed by comprehensive testing to ascertainits efficacy in diverse scenarios.iii
|
55 |
Towards Topography Characterization of Additive Manufacturing SurfacesVedantha Krishna, Amogh January 2020 (has links)
Additive Manufacturing (AM) is on the verge of causing a downfall to conventional manufacturing with its huge potential in part manufacture. With an increase in demand for customized product, on-demand production and sustainable manufacturing, AM is gaining a great deal of attention from different industries in recent years. AM is redefining product design by revolutionizing how products are made. AM is extensively utilized in automotive, aerospace, medical and dental applications for its ability to produce intricate and lightweight structures. Despite their popularity, AM has not fully replaced traditional methods with one of the many reasons being inferior surface quality. Surface texture plays a crucial role in the functionality of a component and can cause serious problems to the manufactured parts if left untreated. Therefore, it is necessary to fully understand the surface behavior concerning the factors affecting it to establish control over the surface quality. The challenge with AM is that it generates surfaces that are different compared to conventional manufacturing techniques and varies with respect to different materials, geometries and process parameters. Therefore, AM surfaces often require novel characterization approaches to fully explain the manufacturing process. Most of the previously published work has been broadly based on two-dimensional parametric measurements. Some researchers have already addressed the AM surfaces with areal surface texture parameters but mostly used average parameters for characterization which is still distant from a full surface and functional interpretation. There has been a continual effort in improving the characterization of AM surfaces using different methods and one such effort is presented in this thesis. The primary focus of this thesis is to get a better understanding of AM surfaces to facilitate process control and optimization. For this purpose, the surface texture of Fused Deposition Modeling (FDM) and Laser-based Powder Bed Fusion of Metals (PBF-LB/M) have been characterized using various tools such as Power Spectral Density (PSD), Scale-sensitive fractal analysis based on area-scale relations, feature-based characterization and quantitative characterization by both profile and areal surface texture parameters. A methodology was developed using a Linear multiple regression and a combination of the above-mentioned characterization techniques to identify the most significant parameters for discriminating different surfaces and also to understand the manufacturing process. The results suggest that the developed approaches can be used as a guideline for AM users who are looking to optimize the process for gaining better surface quality and component functionality, as it works effectively in finding the significant parameters representing the unique signatures of the manufacturing process. Future work involves improving the accuracy of the results by implementing improved statistical models and testing other characterization methods to enhance the quality and function of the parts produced by the AM process.
|
56 |
Učení detektorů pomocí sledování objektů / Learning Detectors by TrackingBuchtela, Radim January 2013 (has links)
This thesis is devoted to learn detectors by object tracking in video sequence. In this thesis, we discuss methods for object tracking, object detection and online learning and possibilities of their using in sophisticated techniques, which combine object tracking and online learning detectors.
|
57 |
Návrh nové metody pro stereovidění / Design of a New Method for StereovisionKopečný, Josef January 2008 (has links)
This thesis covers with the problems of photogrammetry. It describes the instruments, theoretical background and procedures of acquiring, preprocessing, segmentation of input images and of the depth map calculating. The main content of this thesis is the description of the new method of stereovision. Its algorithm, implementation and evaluation of experiments. The covered method belongs to correlation based methods. The main emphasis lies in the segmentation, which supports the depth map calculation.
|
58 |
Génération automatique de phrases pour l'apprentissage des langues / Natural language generation for language learningPerez, Laura Haide 19 April 2013 (has links)
Dans ces travaux, nous explorons comment les techniques de Générations Automatiques de Langue Naturelle (GLN) peuvent être utilisées pour aborder la tâche de génération (semi-)automatique de matériel et d'activités dans le contexte de l'apprentissage de langues assisté par ordinateur. En particulier, nous montrons comment un Réalisateur de Surface (RS) basé sur une grammaire peut être exploité pour la création automatique d'exercices de grammaire. Notre réalisateur de surface utilise une grammaire réversible étendue, à savoir SemTAG, qui est une Grammaire d'Arbre Adjoints à Structure de Traits (FB-TAG) couplée avec une sémantique compositionnelle basée sur l'unification. Plus précisément, la grammaire FB-TAG intègre une représentation plate et sous-spécifiée des formules de Logique de Premier Ordre (FOL). Dans la première partie de la thèse, nous étudions la tâche de réalisation de surface à partir de formules sémantiques plates et nous proposons un algorithme de réalisation de surface basé sur la grammaire FB-TAG optimisé, qui supporte la génération de phrases longues étant donné une grammaire et un lexique à large couverture. L'approche suivie pour l'optimisation de la réalisation de surface basée sur FB-TAG à partir de sémantiques plates repose sur le fait qu'une grammaire FB-TAG peut être traduite en une Grammaire d'Arbres Réguliers à Structure de Traits (FB-RTG) décrivant ses arbres de dérivation. Le langage d'arbres de dérivation de la grammaire TAG constitue un langage plus simple que le langage d'arbres dérivés, c'est pourquoi des approches de génération basées sur les arbres de dérivation ont déjà été proposées. Notre approche se distingue des précédentes par le fait que notre encodage FB-RTG prend en compte les structures de traits présentes dans la grammaire FB-TAG originelle, ayant de ce fait des conséquences importantes par rapport à la sur-génération et la préservation de l'interface syntaxe-sémantique. L'algorithme de génération d'arbres de dérivation que nous proposons est un algorithme de type Earley intégrant un ensemble de techniques d'optimisation bien connues: tabulation, partage-compression (sharing-packing) et indexation basée sur la sémantique. Dans la seconde partie de la thèse, nous explorons comment notre réalisateur de surface basé sur SemTAG peut être utilisé pour la génération (semi-)automatique d'exercices de grammaire. Habituellement, les enseignants éditent manuellement les exercices et leurs solutions et les classent au regard de leur degré de difficulté ou du niveau attendu de l'apprenant. Un courant de recherche dans le Traitement Automatique des Langues (TAL) pour l'apprentissage des langues assisté par ordinateur traite de la génération (semi-)automatique d'exercices. Principalement, ces travaux s'appuient sur des textes extraits du Web, utilisent des techniques d'apprentissage automatique et des techniques d'analyse de textes (par exemple, analyse de phrases, POS tagging, etc.). Ces approches confrontent l'apprenant à des phrases qui ont des syntaxes potentiellement complexes et du vocabulaire varié. En revanche, l'approche que nous proposons dans cette thèse aborde la génération (semi-)automatique d'exercices du type rencontré dans les manuels pour l'apprentissage des langues. Il s'agit, en d'autres termes, d'exercices dont la syntaxe et le vocabulaire sont faits sur mesure pour des objectifs pédagogiques et des sujets donnés. Les approches de génération basées sur des grammaires associent les phrases du langage naturel avec une représentation linguistique fine de leur propriété morpho-syntaxiques et de leur sémantique grâce à quoi il est possible de définir un langage de contraintes syntaxiques et morpho-syntaxiques permettant la sélection de phrases souches en accord avec un objectif pédagogique donné. Cette représentation permet en outre d'opérer un post-traitement des phrases sélectionées pour construire des exercices de grammaire / In this work, we explore how Natural Language Generation (NLG) techniques can be used to address the task of (semi-)automatically generating language learning material and activities in Camputer-Assisted Language Learning (CALL). In particular, we show how a grammar-based Surface Realiser (SR) can be usefully exploited for the automatic creation of grammar exercises. Our surface realiser uses a wide-coverage reversible grammar namely SemTAG, which is a Feature-Based Tree Adjoining Grammar (FB-TAG) equipped with a unification-based compositional semantics. More precisely, the FB-TAG grammar integrates a flat and underspecified representation of First Order Logic (FOL) formulae. In the first part of the thesis, we study the task of surface realisation from flat semantic formulae and we propose an optimised FB-TAG-based realisation algorithm that supports the generation of longer sentences given a large scale grammar and lexicon. The approach followed to optimise TAG-based surface realisation from flat semantics draws on the fact that an FB-TAG can be translated into a Feature-Based Regular Tree Grammar (FB-RTG) describing its derivation trees. The derivation tree language of TAG constitutes a simpler language than the derived tree language, and thus, generation approaches based on derivation trees have been already proposed. Our approach departs from previous ones in that our FB-RTG encoding accounts for feature structures present in the original FB-TAG having thus important consequences regarding over-generation and preservation of the syntax-semantics interface. The concrete derivation tree generation algorithm that we propose is an Earley-style algorithm integrating a set of well-known optimisation techniques: tabulation, sharing-packing, and semantic-based indexing. In the second part of the thesis, we explore how our SemTAG-based surface realiser can be put to work for the (semi-)automatic generation of grammar exercises. Usually, teachers manually edit exercises and their solutions, and classify them according to the degree of dificulty or expected learner level. A strand of research in (Natural Language Processing (NLP) for CALL addresses the (semi-)automatic generation of exercises. Mostly, this work draws on texts extracted from the Web, use machine learning and text analysis techniques (e.g. parsing, POS tagging, etc.). These approaches expose the learner to sentences that have a potentially complex syntax and diverse vocabulary. In contrast, the approach we propose in this thesis addresses the (semi-)automatic generation of grammar exercises of the type found in grammar textbooks. In other words, it deals with the generation of exercises whose syntax and vocabulary are tailored to specific pedagogical goals and topics. Because the grammar-based generation approach associates natural language sentences with a rich linguistic description, it permits defining a syntactic and morpho-syntactic constraints specification language for the selection of stem sentences in compliance with a given pedagogical goal. Further, it allows for the post processing of the generated stem sentences to build grammar exercise items. We show how Fill-in-the-blank, Shuffle and Reformulation grammar exercises can be automatically produced. The approach has been integrated in the Interactive French Learning Game (I-FLEG) serious game for learning French and has been evaluated both based in the interactions with online players and in collaboration with a language teacher
|
Page generated in 0.04 seconds