Spelling suggestions: "subject:"federation search"" "subject:"federativa search""
1 |
Federated Text Retrieval from Independent CollectionsShokouhi, Milad, milads@microsoft.com January 2008 (has links)
Federated information retrieval is a technique for searching multiple text collections simultaneously. Queries are submitted to a subset of collections that are most likely to return relevant answers. The results returned by selected collections are integrated and merged into a single list. Federated search is preferred over centralized search alternatives in many environments. For example, commercial search engines such as Google cannot index uncrawlable hidden web collections; federated information retrieval systems can search the contents of hidden web collections without crawling. In enterprise environments, where each organization maintains an independent search engine, federated search techniques can provide parallel search over multiple collections. There are three major challenges in federated search. For each query, a subset of collections that are most likely to return relevant documents are selected. This creates the collection selection problem. To be able to select suitable collections, federated information retrieval systems acquire some knowledge about the contents of each collection, creating the collection representation problem. The results returned from the selected collections are merged before the final presentation to the user. This final step is the result merging problem. In this thesis, we propose new approaches for each of these problems. Our suggested methods, for collection representation, collection selection, and result merging, outperform state-of-the-art techniques in most cases. We also propose novel methods for estimating the number of documents in collections, and for pruning unnecessary information from collection representations sets. Although management of document duplication has been cited as one of the major problems in federated search, prior research in this area often assumes that collections are free of overlap. We investigate the effectiveness of federated search on overlapped collections, and propose new methods for maximizing the number of distinct relevant documents in the final merged results. In summary, this thesis introduces several new contributions to the field of federated information retrieval, including practical solutions to some historically unsolved problems in federated search, such as document duplication management. We test our techniques on multiple testbeds that simulate both hidden web and enterprise search environments.
|
2 |
Federated search to merge the results of the extracted functional requirementsLi, Xiang 22 August 2022 (has links)
No description available.
|
3 |
May I Suggest? Comparing Three PLE Recommender StrategiesMödritscher, Felix, Krumay, Barbara, El Helou, Sandy, Gillet, Denis, Nussbaumer, Alexander, Albert , Dietrich, Dahn, Ingo, Ullrich, Carsten 12 1900 (has links) (PDF)
Personal learning environment (PLE) solutions aim at empowering learners to design (ICT and web-based) environments for their learning activities, mashingup content and people and apps for different learning contexts. Widely used in other application areas, recommender systems can be very useful for supporting learners in their PLE-based activities, to help discover relevant content, peers sharing similar learning interests or experts on a specific topic. In this paper we examine the utilization of recommender technology for PLEs. However, being confronted by a variety of educational contexts we present three strategies for providing PLE recommendations to learners. Consequently, we compare these recommender strategies by discussing their strengths and weaknesses in general.
|
4 |
Federated Product Information Search and Semantic Product Comparisons on the Web / Föderierte Produktinformationssuche und semantischer Produktvergleich im WebWalther, Maximilian Thilo 20 September 2011 (has links) (PDF)
Product information search has become one of the most important application areas of the Web. Especially considering pricey technical products, consumers tend to carry out intensive research activities previous to the actual acquisition for creating an all-embracing view on the product of interest. Federated search backed by ontology-based product information representation shows great promise for easing this research process.
The topic of this thesis is to develop a comprehensive technique for locating, extracting, and integrating information of arbitrary technical products in a widely unsupervised manner. The resulting homogeneous information sets allow a potential consumer to effectively compare technical products based on an appropriate federated product information system. / Die Produktinformationssuche hat sich zu einem der bedeutendsten Themen im Web entwickelt. Speziell im Bereich kostenintensiver technischer Produkte führen potenzielle Konsumenten vor dem eigentlichen Kauf des Produkts langwierige Recherchen durch um einen umfassenden Überblick für das Produkt von Interesse zu erlangen. Die föderierte Suche in Kombination mit ontologiebasierter Produktinformationsrepräsentation stellt eine mögliche Lösung dieser Problemstellung dar.
Diese Dissertation stellt Techniken vor, die das automatische Lokalisieren, Extrahieren und Integrieren von Informationen für beliebige technische Produkte ermöglichen. Die resultierenden homogenen Produktinformationen erlauben einem potenziellen Konsumenten, zugehörige Produkte effektiv über ein föderiertes Produktinformationssystem zu vergleichen.
|
5 |
Federated Product Information Search and Semantic Product Comparisons on the WebWalther, Maximilian Thilo 09 September 2011 (has links)
Product information search has become one of the most important application areas of the Web. Especially considering pricey technical products, consumers tend to carry out intensive research activities previous to the actual acquisition for creating an all-embracing view on the product of interest. Federated search backed by ontology-based product information representation shows great promise for easing this research process.
The topic of this thesis is to develop a comprehensive technique for locating, extracting, and integrating information of arbitrary technical products in a widely unsupervised manner. The resulting homogeneous information sets allow a potential consumer to effectively compare technical products based on an appropriate federated product information system.:1. Introduction
1.1. Online Product Information Research
1.1.1. Current Online Product Information Research
1.1.2. Aspired Online Product Information Research
1.2. Federated Shopping Portals
1.3. Research Questions
1.4. Approach and Theses
1.4.1. Approach
1.4.2. Theses
1.4.3. Requirements
1.5. Goals and Non-Goals
1.5.1. Goals
1.5.2. Non-Goals
1.6. Contributions
1.7. Structure
2. Federated Information Systems
2.1. Information Access
2.1.1. Document Retrieval
2.1.2. Federated Search
2.1.3. Federated Ranking
2.2. Information Extraction
2.2.1. Information Extraction from Structured Sources
2.2.2. Information Extraction from Unstructured Sources
2.2.3. Information Extraction from Semi-structured Sources
2.3. Information Integration
2.3.1. Ontologies
2.3.2. Ontology Matching
2.4. Information Presentation
2.5. Product Information
2.5.1. Product Information Source Characteristics
2.5.2. Product Information Source Types
2.5.3. Product Information Integration Types
2.5.4. Product Information Types
2.6. Conclusions
3. A Federated Product Information System
3.1. Finding Basic Product Information
3.2. Enriching Product Information
3.3. Administrating Product Information
3.4. Displaying Product Information
3.5. Conclusions
4. Product Information Extraction from the Web
4.1. Vendor Product Information Search
4.1.1. Vendor Product Information Ranking
4.1.2. Vendor Product Information Extraction
4.2. Producer Product Information Search
4.2.1. Producer Product Document Retrieval
4.2.2. Producer Product Information Extraction
4.3. Third-Party Product Information Search
4.4. Conclusions
5. Product Information Integration for the Web
5.1. Product Representation
5.1.1. Domain Product Ontology
5.1.2. Application Product Ontology
5.1.3. Product Ontology Management
5.2. Product Categorization
5.3. Product Specifications Matching
5.3.1. General Procedure
5.3.2. Elementary Matchers
5.3.3. Evolutionary Matcher
5.3.4. Naïve Bayes Matcher
5.3.5. Result Selection
5.4. Product Specifications Normalization
5.4.1. Product Specifications Atomization
5.4.2. Product Specifications Value Normalization
5.5. Product Comparison
5.6. Conclusions
6. Evaluation
6.1. Implementation
6.1.1. Offers Service
6.1.2. Products Service
6.1.3. Snippets Service
6.1.4. Fedseeko
6.1.5. Fedseeko Browser Plugin
6.1.6. Fedseeko Mobile
6.1.7. Lessons Learned
6.2. Evaluation
6.2.1. Evaluation Measures
6.2.2. Gold Standard
6.2.3. Product Document Retrieval
6.2.4. Product Specifications Extraction
6.2.5. Product Specifications Matching
6.2.6. Comparison with Competitors
6.3. Conclusions
7. Conclusions and Future Work
7.1. Summary
7.2. Conclusions
7.3. Future Work
A. Pseudo Code and Extraction Properties
A.1. Pseudo Code
A.2. Extraction Algorithm Properties
A.2.1. Clustering Properties
A.2.2. Purging Properties
A.2.3. Dropping Properties
B. Fedseeko Screenshots
B.1. Offer Search
B.2. Product Comparison / Die Produktinformationssuche hat sich zu einem der bedeutendsten Themen im Web entwickelt. Speziell im Bereich kostenintensiver technischer Produkte führen potenzielle Konsumenten vor dem eigentlichen Kauf des Produkts langwierige Recherchen durch um einen umfassenden Überblick für das Produkt von Interesse zu erlangen. Die föderierte Suche in Kombination mit ontologiebasierter Produktinformationsrepräsentation stellt eine mögliche Lösung dieser Problemstellung dar.
Diese Dissertation stellt Techniken vor, die das automatische Lokalisieren, Extrahieren und Integrieren von Informationen für beliebige technische Produkte ermöglichen. Die resultierenden homogenen Produktinformationen erlauben einem potenziellen Konsumenten, zugehörige Produkte effektiv über ein föderiertes Produktinformationssystem zu vergleichen.:1. Introduction
1.1. Online Product Information Research
1.1.1. Current Online Product Information Research
1.1.2. Aspired Online Product Information Research
1.2. Federated Shopping Portals
1.3. Research Questions
1.4. Approach and Theses
1.4.1. Approach
1.4.2. Theses
1.4.3. Requirements
1.5. Goals and Non-Goals
1.5.1. Goals
1.5.2. Non-Goals
1.6. Contributions
1.7. Structure
2. Federated Information Systems
2.1. Information Access
2.1.1. Document Retrieval
2.1.2. Federated Search
2.1.3. Federated Ranking
2.2. Information Extraction
2.2.1. Information Extraction from Structured Sources
2.2.2. Information Extraction from Unstructured Sources
2.2.3. Information Extraction from Semi-structured Sources
2.3. Information Integration
2.3.1. Ontologies
2.3.2. Ontology Matching
2.4. Information Presentation
2.5. Product Information
2.5.1. Product Information Source Characteristics
2.5.2. Product Information Source Types
2.5.3. Product Information Integration Types
2.5.4. Product Information Types
2.6. Conclusions
3. A Federated Product Information System
3.1. Finding Basic Product Information
3.2. Enriching Product Information
3.3. Administrating Product Information
3.4. Displaying Product Information
3.5. Conclusions
4. Product Information Extraction from the Web
4.1. Vendor Product Information Search
4.1.1. Vendor Product Information Ranking
4.1.2. Vendor Product Information Extraction
4.2. Producer Product Information Search
4.2.1. Producer Product Document Retrieval
4.2.2. Producer Product Information Extraction
4.3. Third-Party Product Information Search
4.4. Conclusions
5. Product Information Integration for the Web
5.1. Product Representation
5.1.1. Domain Product Ontology
5.1.2. Application Product Ontology
5.1.3. Product Ontology Management
5.2. Product Categorization
5.3. Product Specifications Matching
5.3.1. General Procedure
5.3.2. Elementary Matchers
5.3.3. Evolutionary Matcher
5.3.4. Naïve Bayes Matcher
5.3.5. Result Selection
5.4. Product Specifications Normalization
5.4.1. Product Specifications Atomization
5.4.2. Product Specifications Value Normalization
5.5. Product Comparison
5.6. Conclusions
6. Evaluation
6.1. Implementation
6.1.1. Offers Service
6.1.2. Products Service
6.1.3. Snippets Service
6.1.4. Fedseeko
6.1.5. Fedseeko Browser Plugin
6.1.6. Fedseeko Mobile
6.1.7. Lessons Learned
6.2. Evaluation
6.2.1. Evaluation Measures
6.2.2. Gold Standard
6.2.3. Product Document Retrieval
6.2.4. Product Specifications Extraction
6.2.5. Product Specifications Matching
6.2.6. Comparison with Competitors
6.3. Conclusions
7. Conclusions and Future Work
7.1. Summary
7.2. Conclusions
7.3. Future Work
A. Pseudo Code and Extraction Properties
A.1. Pseudo Code
A.2. Extraction Algorithm Properties
A.2.1. Clustering Properties
A.2.2. Purging Properties
A.2.3. Dropping Properties
B. Fedseeko Screenshots
B.1. Offer Search
B.2. Product Comparison
|
Page generated in 0.0633 seconds