• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantized Feedback for Slow Fading Channels

Kim, Thanh Tùng January 2006 (has links)
<p>Two topics in fading channels with a strict delay constraint and a resolution-constrained feedback link are treated in this thesis.</p><p>First, a multi-layer variable-rate single-antenna communication system with quantized feedback, where the expected rate is chosen as the performance measure, is studied under both short-term and long-term power constraints. Iterative algorithms exploiting results in the literature of parallel broadcast channels are developed to design the system parameters. A necessary and sufficient condition for single-layer coding to be optimal is derived. In contrast to the ergodic case, it is shown that a few bits of feedback information can improve the expected rate dramatically. The role of multi-layer coding, however, reduces quickly as the resolution of the feedback link increases.</p><p>The other part of the thesis deals with partial power control systems utilizing quantized feedback to minimize outage probability, with an emphasis on the diversity-multiplexing tradeoff. An index mapping with circular structure is shown to be optimal and the design is facilitated with a justified Gaussian approximation. The diversity gain as a function of the feedback resolution is analyzed. The results are then extended to characterize the entire diversity-multiplexing tradeoff curve of multiple-antenna channels with resolution-constrained feedback. Adaptive-rate communication is also studied, where the concept of minimum multiplexing gain is introduced. It is shown that the diversity gain of a system increases significantly even with coarsely quantized feedback, especially at low multiplexing gains.</p>
2

Quantized Feedback for Slow Fading Channels

Kim, Thanh Tùng January 2006 (has links)
Two topics in fading channels with a strict delay constraint and a resolution-constrained feedback link are treated in this thesis. First, a multi-layer variable-rate single-antenna communication system with quantized feedback, where the expected rate is chosen as the performance measure, is studied under both short-term and long-term power constraints. Iterative algorithms exploiting results in the literature of parallel broadcast channels are developed to design the system parameters. A necessary and sufficient condition for single-layer coding to be optimal is derived. In contrast to the ergodic case, it is shown that a few bits of feedback information can improve the expected rate dramatically. The role of multi-layer coding, however, reduces quickly as the resolution of the feedback link increases. The other part of the thesis deals with partial power control systems utilizing quantized feedback to minimize outage probability, with an emphasis on the diversity-multiplexing tradeoff. An index mapping with circular structure is shown to be optimal and the design is facilitated with a justified Gaussian approximation. The diversity gain as a function of the feedback resolution is analyzed. The results are then extended to characterize the entire diversity-multiplexing tradeoff curve of multiple-antenna channels with resolution-constrained feedback. Adaptive-rate communication is also studied, where the concept of minimum multiplexing gain is introduced. It is shown that the diversity gain of a system increases significantly even with coarsely quantized feedback, especially at low multiplexing gains. / QC 20101117

Page generated in 0.1053 seconds