• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 30
  • 13
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Nonlinear Identification and Control with Solar Energy Applications

Brus, Linda January 2008 (has links)
<p>Nonlinear systems occur in industrial processes, economical systems, biotechnology and in many other areas. The thesis treats methods for system identification and control of such nonlinear systems, and applies the proposed methods to a solar heating/cooling plant. </p><p>Two applications, an anaerobic digestion process and a domestic solar heating system are first used to illustrate properties of an existing nonlinear recursive prediction error identification algorithm. In both cases, the accuracy of the obtained nonlinear black-box models are comparable to the results of application specific grey-box models. Next a convergence analysis is performed, where conditions for convergence are formulated. The results, together with the examples, indicate the need of a method for providing initial parameters for the nonlinear prediction error algorithm. Such a method is then suggested and shown to increase the usefulness of the prediction error algorithm, significantly decreasing the risk for convergence to suboptimal minimum points. </p><p>Next, the thesis treats model based control of systems with input signal dependent time delays. The approach taken is to develop a controller for systems with constant time delays, and embed it by input signal dependent resampling; the resampling acting as an interface between the system and the controller.</p><p>Finally a solar collector field for combined cooling and heating of office buildings is used to illustrate the system identification and control strategies discussed earlier in the thesis, the control objective being to control the solar collector output temperature. The system has nonlinear dynamic behavior and large flow dependent time delays. The simulated evaluation using measured disturbances confirm that the controller works as intended. A significant reduction of the impact of variations in solar radiation on the collector outlet temperature is achieved, though the limited control range of the system itself prevents full exploitation of the proposed feedforward control. The methods and results contribute to a better utilization of solar power.</p>
32

Estimation and Control of Resonant Systems with Stochastic Disturbances

Nauclér, Peter January 2008 (has links)
<p>The presence of vibration is an important problem in many engineering applications. Various passive techniques have traditionally been used in order to reduce waves and vibrations, and their harmful effects. Passive techniques are, however, difficult to apply in the low frequency region. In addition, the use of passive techniques often involve adding mass to the system, which is undesirable in many applications.</p><p>As an alternative, active techniques can be used to manipulate system dynamics and to control the propagation of waves and vibrations. This thesis deals with modeling, estimation and active control of systems that have resonant dynamics. The systems are exposed to stochastic disturbances. Some of them excite the system and generate vibrational responses and other corrupt measured signals. </p><p>Feedback control of a beam with attached piezoelectrical elements is studied. A detailed modeling approach is described and system identification techniques are employed for model order reduction. Disturbance attenuation of a non-measured variable shows to be difficult. This issue is further analyzed and the problems are shown to depend on fundamental design limitations.</p><p>Feedforward control of traveling waves is also considered. A device with properties analogous to those of an electrical diode is introduced. An `ideal´ feedforward controller based on the mechanical properties of the system is derived. It has, however, poor noise rejection properties and it therefore needs to be modified. A number of feedforward controllers that treat the measurement noise in a statistically sound way are derived.</p><p>Separation of overlapping traveling waves is another topic under investigation. This operation also is sensitive to measurement noise. The problem is thoroughly analyzed and Kalman filtering techniques are employed to derive wave estimators with high statistical performance. </p><p>Finally, a nonlinear regression problem with close connections to unbalance estimation of rotating machinery is treated. Different estimation techniques are derived and analyzed with respect to their statistical accuracy. The estimators are evaluated using the example of separator balancing. </p>
33

Control of Nitrogen Removal in Activated Sludge Processes

Samuelsson, Pär January 2005 (has links)
More stringent requirements on nitrogen removal from wastewater are the motivation for this thesis. In order to improve treatment results and enhance cost-efficient operation of wastewater treatment plants, model based control strategies are presented. A Java based simulator for activated sludge processes (JASS) is presented. The graphical user interface, educational experiences and implemented control strategies are discussed. Controlling the addition of an external carbon source is the next topic discussed. A simple model based feedforward controller is derived and evaluated in a simulation study. The controller attenuates process disturbances quickly. Further, two feedforward controllers for adjusting the aeration volume in activated sludge processes are derived. The aim of the volume control strategies was to efficiently dampen the impact of process disturbances without using an excessively high dissolved oxygen concentration. The simulation results are promising and show that the aeration volume may be a feasible control variable. A linearisation method for static input non-linearities is presented. The method gives essentially the same result as the existing standard method, but possesses some implementational advantages. The method is used to linearise the non-linear oxygen transfer function of an activated sludge process in an application study. Multivariable interactions in a process model describing nitrate removal in an activated sludge process are studied using the well known RGA method as well as a relatively novel tool based on Hankel norms. The results of the analysis are compared to conclusions drawn from common process knowledge and are used to design a multivariable control strategy. It was found that process disturbances may be rejected faster using multivariable control. Finally, the operational costs of the denitrification process are investigated and visualised graphically. Cost optimal regions are found by a numerical grid search. Procedures for controlling the denitrification process in a cost-efficient way are described.
34

Controlling Semiconductor Optical Amplifiers for Robust Integrated Photonic Signal Processing

Kuntze, Scott Beland 16 July 2009 (has links)
How can we evaluate and design integrated photonic circuit performance systematically? Can active photonic circuits be controlled for optimized performance? This work uses control theory to analyze, design, and optimize photonic integrated circuits based on versatile semiconductor optical amplifiers (SOAs). Control theory provides a mathematically robust set of tools for system analysis, design, and control. Although control theory is a rich and well-developed field, its application to the analysis and design of photonic circuits is not widespread. Following control theoretic methods already used for fibreline systems we derive three interrelated state-space models: a core photonic model, a photonic model with gain compression, and a equivalent circuit optoelectronic model. We validate each model and calibrate the gain compression model by pump/probe experiments. We then linearize the state-space models to design and analyze SOA controllers. We apply each linearized model to proof-of-concept SOA control applications such as suppressing interchannel crosstalk and regulating output power. We demonstrate the power of linearized state-space models in controller design and stability analysis. To illustrate the importance of using the complete equivalent circuit model in controller design, we demonstrate an intuitive bias-current controller that fails due to the dynamics of the intervening parasitic circuitry of the SOA. We use the linearized state-space models to map a relationship between feedback delay and controller strength for stable operation, and demonstrate that SOAs pose unusual control difficulties due to their ultrafast dynamics. Finally, we leverage the linearized models to design a novel and successful hybrid controller that uses one SOA to control another via feedback (for reliability) and feedforward (for speed) control. The feedback controller takes full advantage of the equivalent circuit modelling by sampling the voltage of the controlled SOA and using the error to drive the bias current of the controller SOA. Filtering in the feedback path is specified by transfer function analysis. The feedforward design uses a novel application of the linearized models to set the controller bias points correctly. The modelling and design framework we develop is entirely general and opens the way to the robust optoelectronic control of integrated photonic circuits.
35

Controlling Semiconductor Optical Amplifiers for Robust Integrated Photonic Signal Processing

Kuntze, Scott Beland 16 July 2009 (has links)
How can we evaluate and design integrated photonic circuit performance systematically? Can active photonic circuits be controlled for optimized performance? This work uses control theory to analyze, design, and optimize photonic integrated circuits based on versatile semiconductor optical amplifiers (SOAs). Control theory provides a mathematically robust set of tools for system analysis, design, and control. Although control theory is a rich and well-developed field, its application to the analysis and design of photonic circuits is not widespread. Following control theoretic methods already used for fibreline systems we derive three interrelated state-space models: a core photonic model, a photonic model with gain compression, and a equivalent circuit optoelectronic model. We validate each model and calibrate the gain compression model by pump/probe experiments. We then linearize the state-space models to design and analyze SOA controllers. We apply each linearized model to proof-of-concept SOA control applications such as suppressing interchannel crosstalk and regulating output power. We demonstrate the power of linearized state-space models in controller design and stability analysis. To illustrate the importance of using the complete equivalent circuit model in controller design, we demonstrate an intuitive bias-current controller that fails due to the dynamics of the intervening parasitic circuitry of the SOA. We use the linearized state-space models to map a relationship between feedback delay and controller strength for stable operation, and demonstrate that SOAs pose unusual control difficulties due to their ultrafast dynamics. Finally, we leverage the linearized models to design a novel and successful hybrid controller that uses one SOA to control another via feedback (for reliability) and feedforward (for speed) control. The feedback controller takes full advantage of the equivalent circuit modelling by sampling the voltage of the controlled SOA and using the error to drive the bias current of the controller SOA. Filtering in the feedback path is specified by transfer function analysis. The feedforward design uses a novel application of the linearized models to set the controller bias points correctly. The modelling and design framework we develop is entirely general and opens the way to the robust optoelectronic control of integrated photonic circuits.
36

Controle feedforward baseado em redes neurais aplicado a coluna de absorção do processo de produção de etanol / Feddforward control based on neural networks applied to an absorption column of ethanol production process

Eyng, Eduardo 01 May 2006 (has links)
Orientadores: Ana Maria Frattini Fileti, Fernando Palu / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química / Made available in DSpace on 2018-08-05T22:21:40Z (GMT). No. of bitstreams: 1 Eyng_Eduardo_M.pdf: 616784 bytes, checksum: 5124ded82b67d3d54bfa60a9d0b1a28e (MD5) Previous issue date: 2006 / Resumo: O etanol perdido por evaporação durante o processo de produção por fermentação pode ser recuperado por uma coluna de absorção, a qual requer um sistema de controle robusto de acordo com sua complexidade. Sendo assim, no presente trabalho foi proposto e testado, o emprego de um controlador feedforward, baseado em um modelo inverso de redes neurais, para realizar a manipulação da vazão de solvente que é alimentado a esta coluna. O desempenho do controlador feedforward proposto foi superior ao proporcionado pelo Controle por Matriz Dinâmica (DMC) (Palú, 2001), para situações nas quais uma perturbação degrau foi inserida na composição do gás à entrada da coluna. Outro teste realizado foi o de implementar um distúrbio não previsto na etapa de treinamento da rede neural, e analisar o comportamento do sistema de controle RNA. Houve uma queda de eficiência, sendo gerado off set. Para solucionar este problema, agregou-se ao sistema de controle, um dispositivo de segurança. Também se procurou testar a tolerância do sistema de controle a distorções nos dados de entrada da rede. Neste sentido, acrescentou-se às variáveis de entrada do tipo concentração, um ruído. O desempenho do controlador RNA foi prejudicado, no entanto, a faixa de oscilação da variável controlada foi reduzida à aproximadamente 50% da faixa de ruído empregada. Aplicando-se um filtro aos dados distorcidos, esta redução foi ainda maior, cerca de 75% / Abstract: Some of ethanol lost by evaporation during its fermentation production process may be recovered using an absorption column, which requires a robust control system. In this work the use of a feedforward controller (NN controller), based on a neural network inverse model, was proposed and tested to manipulate the solvent flow, which was fed in the analyzed column. The feedforward controller performance was better than the Dynamic Matrix Control (Palú, 2001) one, when step disturbances were inserted on the inlet gas composition. Another test done was the insert of a not trained disturbance. The NN controller performance decrease, and a off set could be observed. To solve this problem, a security device was added to the control system. The control system tolerance to modified input neural network data also was tested. In this way, a noise was added to input data. The NN control performance decreased, but the amplitude of the control variable oscillation band was reduced to the half of the noise amplitude employed. When the modified data was filtered the NN control performance decrease was smaller, about 75% of the noise amplitude / Mestrado / Sistemas de Processos Quimicos e Informatica / Mestre em Engenharia Química
37

Multivariable feedforward control of vibrations in multi-axes flexible structures : applications to multi-axes piezoelectric actuators / Commande en boucle ouverte des systèmes mal amortis : applications aux microsystèmes piézoélectriques

Al Hamidi, Yasser 14 December 2017 (has links)
Les actionneurs multi-axes sont de plus en plus prisés par les concepteurs de systèmes de nanopositionnement car ils permettent une réduction de l'espace occupé et de l'énergie consommée, une dextérité plus grande et une modularité avec peu de contraintes pour les applications. Certains de ces actionneurs et systèmes multi-axes sont cependant caractérisés par des oscillations mal-amorties qui compromettent de manière drastique leurs performances générales. Cette thèse concerne l'exploitation des techniques de commande en boucle-ouverte input-shaping classiquement utilisées pour amortir de manière sans capteurs les oscillations dans les systèmes mono-axes et les étendent pour qu'ils soient utilisables pour les systèmes multi-axes. Les résultats proposés dans la thèse qui sont des techniques input-shaping multivariables sont ensuite appliquées sur des actionneurs piézoélectriques classiquement dédiés pour les applications de nanopositionnement. / Multi-axes actuators are becoming more and more tempting to nanopositioning system designers as they enable them to save space, reduce energy consumption, increase dexterity and offer more modularity and freedom with fewer constraints to their applications. Some of these multi-axes actuators and systems exhibit however badly damped vibrations which strongly compromise their global performances. This thesis work exploits the advantages of the well-known feedforward input shaping techniques usually used to damp vibrations in monovariable (SISO) systems to present a new multivariable (MIMO) input shaping technique that can be used to damp vibrations in multi-axes systems. The approach that was used in this study is to extend a previous work that was done on multiple-input single-output (MISO) systems and generalize it for MIMO systems. The study demonstrates also the application of this newly developed technique on different piezoelectric actuators commonly used in nanopositioning systems.
38

Predictive Deceleration Control / Prediktiv retardationsreglering

Collin, Felix January 2022 (has links)
For vehicles equipped with electric motors there exist a possibility to recuperate energy during deceleration. This master’s thesis presents a driver support function, a Predictive Deceleration Control (PDC), that warns the driver when to release the accelerator pedal. If the driver follows the instructions from the function the vehicle will decelerate to an appropriate speed at the upcoming road feature, such as a roundabout. The function should both improve energy consumption and enhance driver comfort. This master’s thesis focused on how such a function can be implemented and a proof of concept was designed in a Matlab/Simulink environment. Within the scope of the proof of concept the function should warn the driver to release the accelerator pedal ahead of roundabouts, intersections, speed limit signs and stop signs. With the help of map information and the vehicle most probable path, the distance to the road features could be determined and the predicted braking distance to these road features could be calculated by the function. A feedforward controller was used to control the deceleration phase and was based on a longitudinal vehicle model. The PDC was tested both in a Lynk &amp; Co 01 and CEVT’s dynamic simulator and the results proved that the function can be implemented in for example a Lynk &amp; Co 01 without any additional hardware needed. However, it requires software that can provide the function with map information. During the tests performed during the master’s thesis, map information was acquired with a frequency of 1 Hz, but for the function to become more robust a higher update frequency is required. / För fordon utrustade med elektriska motorer finns det möjlighet till att återvinna energi under inbromsning. Det här examensarbetet presenterar ett förarhjälpmedel som varnar förare när denna ska släppa accelerationspedalen. Om föraren följer uppmaningen kommer bilen att minska hastigheten till en lämplig ingångshastighet för kommande vägobjekt, till exempel en cirkulationsplats. Funktionen ska både förbättra energiförbrukningen och öka förarstödet. Det här examensarbetet fokuserade på hur en sådan funktion kan implementeras och ett exempel på koncept utvecklades i en Matlab/Simulink miljö. Under utvecklingen av funktionen skulle den prediktiva retardationsregle- ringen varna förare att släppa accelerationspedalen innan cirkulationsplatser, korsningar, hastighetsskyltar och stoppskyltar. Men hjälp av kartdata och fordonets mest troliga väg kunde distansen till nästa vägobjekt bestämmas och den förväntade retardationsdistansen beräknas. Dessa värden användes sedan för att bestämma när föraren ska varnas. Framkopplingsreglering användes för att reglera retardationsförloppet och baserades på en longitudinell fordonsmodell. Den utvecklade funktionen testades både i en Lynk &amp; Co 01 och CEVT:s dynamiska simulator och resultaten visade att funktionen kan implementeras i till exempel en Lynk &amp; Co 01 utan någon extra hårdvara. Dock kräver en implementation av funktionen mjukvara som kan bistå funktionen med kartdata och mest trolig väg för fordonet. Under de utförda testerna i bil samlades kartdata och bilens position in med en frekvens av 1 Hz, men för att funktionens tillförlitlighet ska öka krävs en högre uppdateringsfrekvens.
39

Applications of Quantum Electro-Optic Control and Squeezed Light

Lam, Ping Koy, Ping.Lam@anu.edu.au January 1999 (has links)
In this thesis, we report the observations of optical squeezing from second harmonic generation (SHG), optical parametric oscillation (OPO) and optical parametric amplification (OPA). Demonstrations and proposals of applications involving the squeezed light and electro-optic control loops are presented. ¶ In our SHG setup, we report the observation of 2.1 dB of intensity squeezing on the second harmonic (SH) output. Investigations into the system show that the squeezing performance of a SHG system is critically affected by the pump noise and a modular theory of noise propagation is developed to describe and quantify this effect. Our experimental data has also shown that in a low-loss SHG system, intra-cavity nondegenerate OPO modes can simultaneously occur. This competition of nonlinear processes leads to the optical clamping of the SH output power and in general can degrade the SH squeezing. We model this competition and show that it imposes a limit to the observable SH squeezing. Proposals for minimizing the effect of competition are presented. ¶ In our OPO setup, we report the observation of 7.1 dB of vacuum squeezing and more than 4 dB of intensity squeezing when the OPO is operating as a parametric amplifier. We present the design criteria and discuss the limits to the observable squeezing from the OPO.We attribute the large amount of squeezing obtained in our experiment to the high escape efficiency of the OPO. The effect of phase jitter on the squeezing of the vacuum state is modeled. ¶ The quantum noise performance of an electro-optic feedforward control loop is investigated. With classical coherent inputs, we demonstrate that vacuum fluctuations introduced at the beam splitter of the control loop can be completely cancelled by an optimum amount of positive feedforward. The cancellation of vacuum fluctuations leads to the possibility of noiseless signal amplification with the feedforward loop. Comparison shows that the feedforward amplifier is superior or at least comparable in performance with other noiseless amplification schemes. When combined with an injection-locked non-planar ring Nd:YAG laser, we demonstrate that signal and power amplifications can both be noiseless and independently variable. ¶ Using squeezed inputs to the feedforward control loop, we demonstrate that information carrying squeezed states can be made robust to large downstream transmission losses via a noiseless signal amplification. We show that the combination of a squeezed vacuum meter input and a feedforward loop is a quantum nondemolition (QND) device, with the feedforward loop providing an additional improvement on the transfer of signal. In general, the use of a squeezed vacuum meter input and an electro-optic feedforward loop can provide pre- and post- enhancements to many existing QND schemes. ¶ Finally, we proposed that the quantum teleportation of a continuous-wave optical state can be achieved using a pair of phase and amplitude electro-optic feedforward loops with two orthogonal quadrature squeezed inputs. The signal transfer and quantum correlation of the teleported optical state are analysed. We show that a two dimensional diagram, similar to the QND figures of merits, can be used to quantify the performance of a teleporter.
40

Control of Nitrogen Removal in Activated Sludge Processes

Samuelsson, Pär January 2005 (has links)
<p>More stringent requirements on nitrogen removal from wastewater are the motivation for this thesis. In order to improve treatment results and enhance cost-efficient operation of wastewater treatment plants, model based control strategies are presented.</p><p>A Java based simulator for activated sludge processes (JASS) is presented. The graphical user interface, educational experiences and implemented control strategies are discussed.</p><p>Controlling the addition of an external carbon source is the next topic discussed. A simple model based feedforward controller is derived and evaluated in a simulation study. The controller attenuates process disturbances quickly. Further, two feedforward controllers for adjusting the aeration volume in activated sludge processes are derived. The aim of the volume control strategies was to efficiently dampen the impact of process disturbances without using an excessively high dissolved oxygen concentration. The simulation results are promising and show that the aeration volume may be a feasible control variable.</p><p>A linearisation method for static input non-linearities is presented. The method gives essentially the same result as the existing standard method, but possesses some implementational advantages. The method is used to linearise the non-linear oxygen transfer function of an activated sludge process in an application study.</p><p>Multivariable interactions in a process model describing nitrate removal in an activated sludge process are studied using the well known RGA method as well as a relatively novel tool based on Hankel norms. The results of the analysis are compared to conclusions drawn from common process knowledge and are used to design a multivariable control strategy. It was found that process disturbances may be rejected faster using multivariable control.</p><p>Finally, the operational costs of the denitrification process are investigated and visualised graphically. Cost optimal regions are found by a numerical grid search. Procedures for controlling the denitrification process in a cost-efficient way are described.</p>

Page generated in 0.4512 seconds