• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 12
  • 1
  • Tagged with
  • 37
  • 17
  • 7
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Untersuchungen der Ladungstrennung in wässrigen Elektrolyten mit Zwei- und Drei-Impuls Femtosekunden-Spektroskopie

Fischer, Martin K. January 2009 (has links)
Zugl.: München, Techn. Univ., Diss., 2009
12

Femtosecond photoelectron spectroscopy for observation of chemical reactions

Graefe, Oksana. Unknown Date (has links)
University, Diss., 2005--Kassel.
13

Techniques in frequency conversion and time-resolved spectroscopy with nonlinear optical processes in the femtosecond regime / Techniken der Frequenzumwandlung und der zeitaufgelösten Spektroskopie mit nichtlinearen optischen Prozessen im Femtosekunden-Regime

Maksimenka, Raman January 2005 (has links) (PDF)
Nichtlineare Frequenzumsetzung der niederenergetischen femtosekunden Laserpulsen wurde in den Festkörpermitteln nachgeforscht. Ramanumwandlung im weiss-Licht-freien Regime des impulsiven stimulierten Raman Streuungs wurde erzielt, indem man KGW-Kristall mit den Bessel-Lichtstrahl pumpte. Leistungs-fähiges Superkontinuumerzeugung wurde für die sub-microjule Pulse demonstriert, die in Mikrostrukturfaser fokussiert wurden. Anwendung von Vier-Wellen-Mischung Techniken zur Überwachung der Aufregenzustandsdynamik in den mehratomigen Molekülen wurde demonstriert. Zeitkonstanten der Prozesse, die auf Schwingungsenergiewiederverteilung nach dem ursprunglichen Photoanregung von Stilben-3 bezogen wurden, wurden mittels der Pump-CARS Technik festgestellt, in der CARS-Prozess als wirkungsvoller Modus-vorgewählter Filter diente. Spektrale sowie zeitliche Eigenschaften der elektronischen Entspannungbahnen in den Azulenderivats wurden erforscht, indem man vergänglichen-Bevölkerungs-Gittern und Pump-Probe vergänglichen Absorptions Techniken verwendete. / Nonlinear frequency conversion of low-energy fs laser pulses was investigated in solid-state media. Raman conversion in the white-light-free regime of impulsive stimulated Raman scattering was achieved by pumping KGW crystal with Bessel beam. Efficient supercontinuum generation was demonstrated for sub-microjule pulses focused into microstructure fiber. Application of four-wave mixing techniques to monitoring of the excited-state dynamics in polyatomic molecules was demonstrated. Time constants of the processes related to vibrational energy redistribution upon the initial photoexcitation of stilbene-3 were determined by means of pump-CARS technique, where CARS process served as an effective mode-selective filter. Spectral as well as temporal properties of electronic relaxation pathway in azulene derivatives were explored by using transient population gratings and pump-probe transient absorption techniques.
14

Ultrafast linear and non-linear spectroscopy : from biological light-receptors to artificial light-harvesting systems / Ultraschnelle lineare und nicht-lineare Spektroskopie : Von biologischen Lichtrezeptoren zu künstlichen Lichtsammelsystemen

Dietzek, Benjamin January 2005 (has links) (PDF)
In the experiments presented in this work, linear and non-linear femtosecond time-resolved spectrsocopy were applied to investigate the structure-function and functiondynamics relationship in biological and artificially designed systems. The experiments presented in this work utilize femtosecond time-resolved transient absorption and transient grating as well as picosecond time-resolved fluorescence spectroscopy to investigate the photophysics and photochemistry of biological photoreceptors and address the light-induced excited-state processes in a particular molecular device that serves as a - structurally - very simple light-harvesting antenna and potentially as a catalysis-switch for the production of hydrogen in solution. The combination of white-light probe transient absorption and coherent transient grating spectroscopies yields spectral information about the excited state absorption in concert with high quality, high signal-to-noise kinetic transients, which allow for precise fitting and therefore very accurate time-constants to be extracted from the data. The use of femtosecond time-resolved transient grating spectroscopy is relatively uncommon in addressing questions concerning the excited-state reaction pathways of complex (biological) systems, and therefore the experiments presented in this work constitute according to the literature the first studies applying this technique to a a metalloporphyrin and an artificial light-harvesting antenna. / In der hier vorliegenden Arbeit wurden die Struktur- Funktions- und Funktions- Dynamik- Beziehungen in biologischen und künstlich synthetisierten Systemen untersucht. Hierfür wurden Femtosekunden zeitaufgelöste lineare und nicht-lineare spektroskopische Techniken verwendet. Mittels transienter Absorptions- und transienter Gitterspektroskopie sowie Pikosenkunden zeitaufgelöster Fluoresezenzmessungen wurden ausgewählte pflanzliche Photorezeptoren untersucht und die Relaxationsprozesse im angeregten Zustand einer artifiziellen Lichtsammelantenne charakterisiert. Die Kombination aus Femtosekundenzeitaufgelöster transienter Absorption unter Verwendung eines Weisslichtsuperkontinuums als Probepuls und kohärenter Vier-Wellen-Mischungs-Spektroskopie erlaubt es, breitbandige spektrale Informationen über einen photo-angeregten Zustand zu gewinnen und gleichzeitig Kinetiken mit einem sehr hohen Signal-Rausch-Verhältnis zu messen. Letztere erlauben einen präzisen Fit, und somit können sehr präzise charakteristische Zerfallskonstanten aus den zeitaufgelösten Daten rekonstruiert werden. Durch den komplexeren Versuchsaufbau eines Vier-Wellen-Mischungs-Experiments verglichen mit dem transienter Absorptionsspektroskopie ist die Verwendung von zeitaufgelöster transienter Gitterspektroskopie zur Untersuchung licht-induzierter Prozesse in komplexen biologischen Systemen noch immer relativ unüblich. Daher stellen die hier präsentierten Ergebnisse die ersten Experimente dar, in denen diese Technik zur Untersuchung von angeregter Zustandsrelaxation in einem Metalloporphyrin und einem künstlichen photosynthetischen Reaktionszentrum eingesetzt wurde.
15

Tracing Excited-State Photochemistry by Multidimensional Electronic Spectroscopy / Auflösung der Photochemie von angeregten Zuständen mittels multidimensionaler elektronischer Spektroskopie

Kullmann, Martin Armin January 2013 (has links) (PDF)
Light-induced excitation of matter proceeds within femtoseconds, resulting in excited states. Originating from these states chemical reaction mechanisms, like isomerization or bond formation, set in. Photophysical mechanisms like energy distribution and excitonic delocalization also occur. Thus, the reaction scheme has to be disentangled by assessing the importance of each process. Spectroscopic methods based on fs laser pulses have emerged as a versatile tool to study these reactions. Within this thesis time-resolved experiments with fs laser pulses on various molecular systems were performed. Novel photosystems, with possible applications ranging from ultrathin molecular wires to molecular switches, were extensively characterized. To resolve the complex kinetics of the investigated systems, time-resolved techniques had to be newly developed. By combining a visible excitation pulse pair with an additional pulse and a continuum probe electronic triggered-exchange two-dimensional spectroscopy (TE2D) was demonstrated for the first time. This goal was accomplished by combining a three-color transient-absorption setup with a pulse shaper. Hence, 2D spectroscopy with a continuum probe was also implemented. Using these methods two different molecular systems in solution were characterized in a comprehensive manner. (ZnTPP)2, a directly beta,beta’-linked Zn-metallated bisporphyrin, and a spiropyran-merocyanine photosystem, 6,8-dinitro BIPS, were characterized. (ZnTPP)2 is a homodimer, featuring strong excitonic effects. These manifest themselves in a twofold splitting of the Soret band (S2). 6,8-Dinitro BIPS exists in one of two possible conformations. The ring closed spiropyran absorbs only in the UV, while the ring open merocyanine also absorbs in the visible. For both molecular systems photodynamics upon illumination were monitored using transient-absorption. However, the obtained results were ambiguous, necessitating more complex methods. In the case of (ZnTPP)2 first the monomeric building block was characterized. There, population transfer from the S2 state into S1 within 2 ps was identified. Afterwards, intersystem crossing proceeds within 2 ns. For (ZnTPP)2 similar pathways were found, albeit the relaxation is faster. The intersystem crossing with 1.5 ns was not only indirectly deduced but directly measured by probing in the NIR spectral range. The excitonic influence of was investigated by coherent 2D spectroscopy in the Soret band. Population transfer within S2 was directly visualized on a time-scale of 100 fs. Calculation of the 2D spectra of a simple homodimer confirmed the results. After this analysis of the distinct excitonic character, this molecule may serve as a building block for larger porphyrin arrays with applications ranging from asymmetric catalysis over biomimicry of electron-transfer to organic optical devices. The second photosystem was the molecular switch 6,8-dinitro BIPS, existing in two conformations. Merocyanine is the more stable form in thermal equilibrium. Transient-absorption measurements uncovered that the sample consisted of a mixture of two merocyanine isomers, referred to as TTC and TTT. However, both isomers are capable of ring-closure forming spiropyran. The remaining excited molecules return to the ground state radiatively. Conducting 2D measurements utilizing a continuum probe the differing photochemistry of both isomers was examined in a single measurement. No isomerization between these conformations was detected. Therefore, 6,8-dinitro BIPS performs a concerted switching without long-living intermediates. This was confirmed by a pump-repump-probe scan. 6,8-DinitroBIPS can be closed by visible and opened by UV pulses using subsequent pulses and vice versa. These mechanisms via singlet pathways satisfy an important criterion for a unimolecular switching device. A second pump-repump-probe experiment showed that the sample is ionized, resulting in a merocyanine radical cation, when the first excited state is resonantly excited. Furthermore, by implementing TE2Dspectroscopy, it was elucidated that only TTC was ionized. Taking all this into account new techniques were developed and complex molecular systems were characterized within this thesis. Deeper insight into the photodynamics of (ZnTPP)2and 6,8-dinitro BIPS was gained by adapting transient absorption for the NIR spectral range, constructing a 2D setup in pump-probe geometry, and combining it with multipulse excitation to coherent TE2D. All techniques solved the questions for which they were constructed, but they are not limited to these cases. Especially TE2D opens new roads in photochemistry. By connecting reactant, product and the corresponding intermediates, a chemical reaction can be tracked through all stages, making unambiguous identification of the reactive states feasible. Thus, fundamental insight into the photochemistry of molecular compounds is gained. / Über Lichtanregung erreichen Moleküle innerhalb von Femtosekunden angeregte Zustände. Aus diesen können photochemische Reaktionen wie Isomerisierungen einsetzen. Zusätzlich treten photophysikalische Effekte wie exzitonische Delokalisierungen auf. Daher ist es wichtig, die auftretenden Relaxationspfade zu analysieren um das Reaktionsschema des Systems zu erhalten. Ultrakurzzeitspektroskopie mit Femtosekundenlaserpulsen hat sich als nützliches Werkzeug erwiesen um lichtinduzierte Reaktionen auf ihrer intrinsischen Zeitskala zu studieren. In dieser Arbeit sind zeitaufgelöste Experimente an unterschiedlichen Verbindungen durchgeführt worden. Einerseits wurden neuartige Molekülklassen umfassend photodynamisch untersucht. Andererseits sind neue breitbandige Spektroskopiemethoden entwickelt worden. Durch die Kombination eines Anregungspulspaars mit einem weiteren Laserpuls sowie einem Weißlichtkontinuum wurde zum ersten Mal elektronische zweidimensionale Spektroskopie mit ausgelöster Umwandlung ("triggered-exchange 2D“, TE2D) demonstriert. Dies war durch die Implementierung eines Pulsformers in ein transientes Absorptionsspektrometer möglich. In einem ersten Experiment wurde die prinzipielle Eignung des Aufbaus getestet indem 2D Spektroskopie mit Weißlichtabfrage implementiert wurde. Diese Methoden wurden dazu genutzt zwei verschiedene Verbindungen zu untersuchen, ein direkt beta,beta'-verknüpftes, Zn-metalliertes Bisporphyrin [(ZnTPP)2] und ein Spiropyran-Merocyanin Photoschalter (6,8-dinitro BIPS). (ZnTPP)2 ist ein Homodimer, in welchem sich starke exzitonische Einflüsse, z. B. das Aufspalten der Soret-Bande (S2), zeigen. 6,8-Dinitro BIPS hingegen besteht aus zwei Konformeren. Zum einen liegt das nur im UV absorbierende Spiropyran vor. Das zweite Konformer ist Merocyanin, welches zusätzlich im sichtbaren absorbiert. Zuerst sind die Relaxationsdynamiken beider Moleküle mittels transienter Absorption untersucht worden. Allerdings waren die Resultate nicht eindeutig, so dass im Anschluss komplexere Messmethoden angewandt wurden. Für das Studium des Bisporphyrins (ZnTPP)2 wurde das zugehörige Monomer untersucht. Nach Anregung relaxiert die Population aus dem S2 in den S1 Zustand. Anschließend tritt Intersystem Crossing in T1 ein. Für das Dimer selbst ergaben sich die gleichen Reaktionswege. Das Intersystem Crossing wurde nicht nur abgeleitet, sondern durch Abfrage im nahinfraroten Spektralbereich direkt gemessen. Der Einfluss der Exzitonen auf das Bisporphyrin wurde durch kohärente 2D Spektroskopie innerhalb der Soret-Bande untersucht. Dies ermöglichte die Visualisierung von Populationstransfer innerhalb von 100 fs. Eine Berechnung der 2D Spektren eines einfachen Homodimers unterstützt dieses Resultat. Indem die hier vorgestellten Ergebnisse genutzt werden, könnte (ZnTPP)2 als Baustein für Porphyrinsysteme dienen. Deren denkbare Anwendungen reichen von asymmetrischer Katalyse über die Nachahmung von biologischem Elektronentransfer hinzu organo-optischen Geräten. Das zweite untersuchte System war der molekulare Schalter 6,8-dinitro BIPS mit Merocyanin als stabile Form im thermischen Gleichgewicht. Transiente Absorptionsmessungen deckten auf, dass die Lösung aus zwei Merocyanin-Isomeren besteht (TTC oder TTT). Es ergab sich ebenso, dass beide eine elektrozyklische Ringschlussreaktion zum Spiropyran durchführen. Mittels eines 2D Spektrums konnte die unterschiedliche Photochemie beider Isomere innerhalb einer einzigen Messung aufgezeigt werden. Zusätzlich wurde keine Isomerisierung zwischen ihnen beobachtet. Damit steht fest, dass 6,8-dinitro BIPS eine konzertierte Reaktion zum Spiropyran durchführt. Der direkte Schaltvorgang wurde eindeutig über Anrege-Wiederanrege-Abfrage Spektroskopie nachgewiesen. Hierfür wurde 6,8-dinitro BIPS mit sichtbarem gefolgt von ultraviolettem Licht bestrahlt. Der resultierende zweifache Schaltvorgang ist ein wichtiges Kriterium für einen Photoschalter. Ein ähnliches Experiment zeigte, dass 6,8-dinitro BIPS ionisiert wird, wenn die angeregte Population resonant bestrahlt wird. Das neugebildete langlebige Produkt konnte einem Kation zugeordnet werden. Durch die Verwendung der neuen elektronischen TE2D Methode ist aufgezeigt worden, dass lediglich TTC ionisiert werden kann. Zusammengefasst gilt, dass sowohl Fortschritte in der Methodenentwicklung als auch in der Charakterisierung von Verbindungen erzielt wurden. Ein tieferes Verständnis über die Dynamiken des Bisporphyrins (ZnTPP)2 und des molekularen Schalters 6,8-dinitro BIPS wurden durch Erweiterungen an einem transienten Absorptionsspektrometers, den Aufbau eines 2D Spektrometers in Anrege-Abfrage-Geometrie und durch die Kombination von letzterem mit Mehrfachanregung zu TE2D Spektroskopie gewonnen. Insbesondere letztere eröffnet neue Möglichkeiten in der Photochemie, da Edukte, Produkte und die zugehörigen Zwischenzustände miteinander verknüpft werden, wodurch lichtinduzierte Reaktionen schrittweise nachvollzogen werden können.
16

Donor-Bridge-Acceptor Systems with Varying Bridge Units for the Investigation of Intramolecular and Intermolecular Electron Transfer Processes / Donor-Brücke-Akzeptor Systeme mit variierenden Brückeneinheiten zur Untersuchung von intramolekularen und intermolekularen Elektronentransferprozessen

Kaiser, Conrad January 2014 (has links) (PDF)
Within this study, the influence of the energetics of the bridge unit on electron transfer (ET) in an electrode-bridge-donor system was investigated in a monolayer environment. This was realized by specifically designing molecules containing ferrocene carboxylic ester donors and hydroquinone derivatives as bridge units and by using a gold electrode as acceptor. The energetics of the hydroquinone derivatives was adjusted by synthetically varying its substituents with the intention of changing the ET speed and mechanisms. Thereby the choice of the substituents was based on the literature known half-wave potentials of similar solvated hydroquinone derivatives and successively confirming them by conducting cyclic voltammetry on the actual bridge units synthesized. Then, a synthetic pathway, which accommodated the limited stability of the integrated terminal ferrocene carbon acid ester, was developed and successfully employed. This was followed by developing a procedure for preparing very dense and highly ordered monolayers from the target molecules on self-made gold microelectrodes. For the electrochemical investigations, several electrolyte solutions were tested until one, which ensured low susceptibility of the characterization setup towards slight changes of the electrode arrangement and measurement parameters while ensuring sufficient stability of the monolayers, was found. Furthermore, a new, commercially available potentiostat was established for the impedance measurements, which reduced the stress on the monolayers during the electrochemical characterizations in comparison to the equipment used in many former studies. Regarding the determination of the ET rates, the data analysis protocol for the impedance measurements developed by Creager et al. was slightly adapted to allow analysis of the investigated monolayers despite their non-ideal behavior. In addition, the influence of changes to the electrical parameters of the impedance scans was investigated to minimize the error in the acquired data. The electrochemical analysis of the monolayers by conducting cyclic voltammetry on MA, MB and MC prepared from A, B and C confirmed the accomplishment of near ideal surface coverage and exceptionally high order. The surface coverages of MB and MC were, probably due to the space filled by the substituents on their bridge units, slightly lower than those of MA. Furthermore, the shape of the redox waves of the ferrocene carboxylic acid redox center in the voltammogram of MA showed a broadening and a shift towards higher potentials, which was assigned to electrostatic interference of oxidized terminal redox centers due to the especially dense packing. However, in the voltammogram of MB, no sharp redox waves of the bridge units, as predicted by the analysis of preliminary monolayers of the same type with low surface coverage, were present. This was attributed to the different and varying microenvironment of the bridge units deeply embedded within high-density monolayers. In detail, the different degree of shielding of each individual bridge unit from counter ions and solvent molecules probably resulted in the half wave potential being shifted to varying higher potentials, thus preventing the formation of sharp redox waves. In addition, electrostatic effects of oxidized bridge units could have enhanced this effect. This leads to the conclusion that the half-wave potentials of fully solvated bridge units determined by the cyclic voltammetry are not suited to predict the energetics of the oxidized bridge states embedded within the prepared high density monolayers. Finally, the monolayers were successfully analyzed by impedance spectroscopy, which showed that the ET rate of MA is slightly higher than that of MB, and both are higher than that of MC. All of the values were, according to literature, in the expected region considering the length and degree of conjugation of the backbone. However, this picture is relativized when considering the targeted energetic alignment of the bridge units. According to the predicted very small energy gap between the oxidized states of the donor and the bridge unit in MB, a domination of the hopping mechanism should have led to a several orders of magnitude higher ET rate than in MA and MC. That this was not the case was attributed to the underestimation of the energy of the oxidized bridge states by utilizing cyclic voltammetry of the fully solvated bridge units (see above). According to the small differences of the ET rates the superexchange process was assumed to be the dominating mechanism not only in MA and MC but also in MB. However, even when shifted, the predicted energetic order of the oxidized bridge states should have led to a moderately decreasing ET rate from MB over MA to MC. The reason for the actual ET rate in MA being slightly higher than in MB might be found in the electrostatic interference of the terminal redox centers in MA (see above). In conclusion, the targeted model systems were prepared and the ET rates were successfully determined. However, the problems concerning the relative energetic positioning of the involved states within the dense monolayers prevented the specific alteration of the speed and mechanism of the ET. The reason for this can be probably found in the high density and order of the monolayers prepared within this work, which hamper the intrusion of the components of the electrolyte solutions. This various degree of stabilization for the individual bridge units by counter ions and solvent molecules leads to the energy of the oxidized bridge states being splitted and shifted towards higher potentials with respect to fully solvated bridge units. This effect might be further enhanced by electrostatics of neighboring already oxidized bridge states. All this makes the predetermination of the energetics of the embedded bridge units extremely difficult. On one hand, this behavior can be considered an obstacle and could probably be circumvented by designing molecules with bulky anchor groups and rigid molecular backbones, which would ensure perpendicular arrangement to the surface and full exposure of the bridge and terminal redox centers to the solvent molecules and counter ions. On the other hand, monolayers which completely embed integral redox centers might open up the opportunity to study the effects of microenvironments similar to those in solid state materials. Regarding mixed valence compounds, the present study focuses on bistriarylamine radical cation F∙+, which contains the [3.3]paracyclophane bridge unit. The results were compared to the, except for the bridge units, identical literature known compounds G∙+ and N∙+ with [2.2]paracyclophane and p-xylene bridges respectively. This led to the conclusion that slightly different bridge units can induce substantial changes to the internal reorganization energy. This is especially noteworthy since it is usually believed that structural adaption limited to the redox centers taking part in the charge transfer dominates the internal reorganization energy. Furthermore, the application of the two-state Mulliken-Hush approach shows that compounds F∙+ and G∙+ have near identical couplings and similar thermal barriers. Confirmation of the latter finding as well as near identical thermal electron transfer rates for both compounds were provided via a cooperation project by Grampp et al. in which these values were directly extracted from temperature dependent electron paramagnetic resonance measurements. These results are quite unexpected since the “through-space” distances of the stacked pi-systems in the paracyclophane bridges differ significantly. They are well within the sum of the van der Waals radii in G∙+ and barely within them in compound F∙+. In addition, these findings weaken the common assumption of the ethylene bridges in G∙+ substantially adding to the electronic coupling, since then, in F∙+, due to its propylene linkers, the coupling should be substantially reduced. Finally, relying on the fact that the electronic couplings are only three times higher and the thermal electron transfer rates are only one order of magnitude higher for N∙+ than for compounds F∙+ and G∙+ shows that intermolecular electron transfer in solid state materials can remain efficient, if the interacting pi-systems stay within the sum of van der Waals radii of their carbons. Concerning the donor-acceptor dyads, the current investigation centers on triarylamine-cyclophane-naphtalene diimide (TAA-CP-NDI) compounds which display almost complete photoinduced charge separation. Furthermore, their singlet charge separated states show lifetimes of hundreds of nanoseconds, which is rarely found in such simple dyads. In the present case they can be attributed to the particular amount of electronic coupling V (on the order of 100 cm^–1), which is brought about by incorporation of the smallest model systems for pi-stacks, the CPs, together with the nodes on the NDI lowest unoccupied molecular orbital, which electronically decouples the central NDI from its nitrogen substituents. In agreement with studies of [2.2]- and [3.3]paracyclophane bridged mixed valence compounds (see above), the cycolphane bridged dyads show very similar electronic coupling when dealing with ground state processes like charge recombination. However, when investigating excited state processes, like charge separation in the TAA-CP-NDI dyads, one has to bear in mind that the CP orbitals are involved in the formation of intermediate states that likely possess charge transfer character. In this case, the [2.2]paracyclophane bridge obviously induces a stronger coupling than the [3.3]paracyclophane. Another interesting property of the dyads studied here is the substantial population of the triplet charge separated (CS) state of ca. one third regarding both CS states, which is brought about by singlet-triplet interconversion from the singlet CS state. Thus, the triplet CS state with a lifetime of several microseconds acts as a kind of buffer for the CS state before recombining to the ground state and, thus, leads to distinctly prolonged overall lifetimes of the charge separated states. Thus it can be concluded that the intersystem crossing and charge recombination (CR) processes of the CS states are governed by a delicate balance of a large electronic coupling V and a large exchange interaction 2J (both with regard to systems containing a through-space pathway). The latter appears to be induced by second order interaction with a local triplet state lying close in energy to the CS state. This balance results in slow CR- and singlet-triplet- interconversion rates, which differ only by one order of magnitude. Compared to the many NDI containing dyads studied so far, these features of the dyads studied here are, to the best of our knowledge, unique. Especially the combination of high quantum yield of charge separation, long lifetimes and high energy of the charge separated state make the investigated systems interesting for practical applications. Furthermore, the presented unraveling of the underlying mechanisms is of substantial value for the future design of dyads for practical applications regarding the implementation and adjustment of these favorable properties. / Im ersten Teil dieser Arbeit wurde der Einfluss der Veränderung der Energetik von Brückeneinheiten auf Elektronentransferprozesse in Donor-Brücke-Akzeptor Modellsystemen in einer Monolagenumgebung untersucht. Dies wurde mittels speziell dafür entworfener Moleküle mit Ferrocencarbonsäureester Donoren und Hydrochinonderivaten als Brückeneinheiten und durch Verwendung einer Goldelektrode als Akzeptor verwirklicht. Die Energetik der Hydrochinonderivate wurde durch synthetische Variation der Substituenten mit der Absicht angepasst, die Geschwindigkeiten und die Mechanismen der Elektronentransferprozesse zu verändern. Dabei basierte die Wahl der Substituenten auf literaturbekannten Halbstufenpotentialen von ähnlichen solvatisierten Hydrochinonderivaten und anschließender Bestimmung der Halbstufen-potentiale der im Rahmen dieser Arbeit synthetisierten solvatisierten Vorläufer der Brückeneinheiten. Dann wurde unter Berücksichtigung der eingeschränkten Stabilität des Ferrocencarbonsäureesters ein Syntheseplan entwickelt und erfolgreich angewendet. Anschließend wurde eine Vorgehensweise zur Herstellung von sehr dichten und hoch geordneten Monolagen aus den Zielmolekülen auf selbst hergestellten Mikroelektroden aus Gold erarbeitet. Ferner wurden verschiedene Elektrolyte getestet, um eine niedrige Empfindlichkeit des Messaufbaus in Bezug auf kleine Änderungen der Elektrodenanordnung und der Messparameter zu gewährleisten und gleichzeitig eine ausreichende Stabilität der Monolagen sicherzustellen. Des Weiteren wurde ein neuer, kommerziell erhältlicher Potentiostat für die Untersuchungen etabliert, der die Belastung für die Monolagen im Vergleich zu den Messapparaturen in vielen bisherigen Studien reduzierte. Bezüglich der Bestimmung der Elektronentransferraten wurde das von Creager et al. entwickelte Protokoll geringfügig erweitert, um die Monolagen trotz ihres nicht-idealen Verhaltens untersuchen zu können. Zusätzlich wurde der Einfluss der elektrischen Parameter der Impedanzmessungen untersucht, um den Fehler in den erfassten Daten zu minimieren. Die elektrochemische Analyse der Monolagen mittels Cyclovoltammetrie bestätigte das Erreichen einer fast idealen Oberflächendeckung und einer außergewöhnlich hohen Ordnung. Die Oberflächendeckung von MB und MC war, wahrscheinlich aufgrund der raumfüllenden Substituenten der Brückeneinheiten, geringfügig niedriger als die von MA. Ferner zeigen die Redoxwellen im Cyclovoltammogramm von MA eine Verbreiterung und eine Verschiebung zu höheren Potentialen, was auf die elektrostatischen Wechselwirkungen der terminalen Redoxzentren als Folge der besonders dichten Packung zurückgeführt wurde. Bei der cyclovoltammetrischen Untersuchung von MB zeigten sich im Gegensatz zu Vorversuchen an Monolagen desselben Typs mit niedriger Oberflächenbelegung jedoch keine der aufgrund der vorhergesagten Energetik erwarteten, scharfen Redoxwellen der Brückeneinheiten. Dies lässt sich wahrscheinlich auf die unterschiedlichen Umgebungen der tief in die sehr dichten Monolagen eingebetteten Brückeneinheiten zurückführen. Im Detail verursachte vermutlich die unterschiedliche Abschirmung gegenüber den einzelnen Gegenionen und Solvensmolekülen eine Verschiebung der oxidierten Brückenzustände zu verschiedenen höheren Potentialen. Das führt zu der Schlussfolgerung, dass die mittels Cyclovoltammetrie bestimmten Halbstufenpotentiale von solvatisierten Brückeneinheiten nicht geeignet sind, um die Energetik der oxidierten Brückenzustände im Innern von sehr dichten Monolagen vorherzusagen. Bei der Analyse der Monolagen mittels Impedanzspektroskopie zeigte sich, dass die Elektronentransferraten von MA geringfügig höher als die von MB und beide höher als die von MC sind. Im Einklang mit der Literatur befanden sich alle Werte unter Berücksichtigung der Länge und des Konjugationsgrads des Molekülrückrads in der erwarteten Region. Jedoch relativiert sich dieses Bild bei Berücksichtigung der beabsichtigten energetischen Anpassung der Brückeneinheiten. Aufgrund der vermeintlich nur geringfügig höheren Energie der Zustände der oxidierten Brücke und des oxidierten Donors in MB hätte ein Dominieren des „hopping“ Mechanismus zu einer um einige Größenordnungen höheren Elektronentransferrate als in MA und MC führen sollen. Dass dies nicht der Fall war, kann wahrscheinlich auf die Unterschätzung der oxidierten Brückenzustände durch die Bestimmung mittels Cyclovoltammetrie an den solvatisierten Brückeneinheiten zurückgeführt werden (siehe oben). Insgesamt kann aufgrund der eher geringen Unterschiede der Elektronentransferraten für MA, MB und MC von einem dominierenden „superexchange“ Mechanismus ausgegangen werden. Allerdings hätte, sogar bei einer Verschiebung der Potentiale, die vorhergesagte energetische Anordnung der oxidierten Brückenzustände zu einer sich geringfügig verringernden Elektronentransferrate von MB über MA zu MC führen müssen. Der Grund dafür, dass die tatsächliche Elektronentransferrate in MA geringfügig höher als in MB ist, liegt möglicherweise an der dichteren Packung und damit stärkeren elektrostatischen Interferenz der terminalen Redoxzentren in MA (siehe oben). Schließlich wurden also die anvisierten Modellsysteme hergestellt und deren Elektronentransferraten erfolgreich bestimmt. Die Probleme mit der relativen energetischen Anordnung der Zustände der Molekülteile in den dichten Monolagen verhinderten allerdings die gezielte Veränderung der Geschwindigkeit und des Mechanismus des Elektronentransfers. Dies ist wahrscheinlich im Wesentlichen auf die hohe Dichte und Ordnung der im Rahmen dieser Arbeit präparierten Monolagen zurückzuführen, die ein Eindringen der Elektrolytbestandteile in die Monolagen hemmen. Dies führt zu unterschiedlichen Abständen der einzelnen Brückeneinheiten zu den Elektrolytbestandteilen und damit, aufgrund unterschiedlicher Abschwächung der Stabilisierung, zu einer Aufspaltung und Verschiebung des oxidierten Brückenzustandes zu höheren Potentialen. Des Weiteren könnte dieser Effekt durch elektrostatische Kräfte von benachbarten, bereits oxidierten Brückeneinheiten verstärkt werden. All dies macht die Vorhersage der Energetik von eingebetteten Brückeneinheiten extrem schwer. Auf der einen Seite kann dieses Verhalten als Hindernis angesehen werden, dass jedoch durch die Entwicklung von Molekülen mit sperrigen Ankergruppen und starren Molekülrückrädern, die eine Anordnung senkrecht zur Oberfläche und damit eine Exposition gegenüber den Elektrolytbestandteilen ermöglichen, vermieden werden könnte. Auf der anderen Seite könnten gerade solch dichte Monolagen eine Möglichkeit zur Erforschung von Einflüssen einer Umgebung ähnlich derer in Festkörpermaterialien bieten. Im zweiten Teil dieser Arbeit wurde der Einfluss verschieden großer Paracyclophane als Brückeneinheiten auf Elektronentransferprozesse in Donor-Brücke-Akzeptor Modellsystemen in Lösung untersucht. In Bezug auf die gemischt valenten Verbindungen, konzentrierte sich die Studie auf Bistriarylaminradicalkation F∙+, welches über eine [3.3]Paracyclophan Brückeneinheit verfügt. Die Ergebnisse wurden mit den bis auf die Brückeneinheiten identischen literaturbekannten Verbindungen G∙+ und N∙+ mit [2.2]Paracyclophan bzw. p-Xylen Brücken verglichen. Dies führte zu der Schlussfolgerung, dass bereits sehr kleine Veränderungen der Brückeneinheiten bedeutende Änderungen der internen Reorganisationsenergie bewirken können. Das ist besonders bemerkenswert, da allgemein angenommen wird, dass fast ausschließlich die strukturelle Anpassung der Redoxzentren die Größe der internen Reoranisationsenergie bestimmt. Ferner zeigte die Anwendung des Mulliken-Hush-Ansatzes für zwei Zustände, dass Verbindung F∙+ eine nahezu gleich große Kopplung und eine ähnliche thermische Barriere wie G∙+ aufweist. Dies wurde im Rahmen eines Kooperationsprojekts von Grampp et al. bestätigt, bei dem entsprechende Werte sowie fast identische thermische Elektrontransferraten direkt aus temperaturabhängigen Elektronenspinresonanzmessungen extrahiert wurden. Das ist bemerkenswert, da sich die Entfernungen der gestapelten pi-Systeme in den Paracyclophanbrückeneinheiten stark unterscheiden. Sie sind deutlich innerhalb der Van der Waals Radien der integralen Kohlenstoffe in G∙+ und nur gerade noch innerhalb in Verbindung F∙+. Ferner schwächen diese Erkenntnisse die allgemeine Annahme, dass die Ethylenbrücken in G∙+ stark zur elektronischen Kopplung beitragen, da unter dieser Annahme in F∙+, wegen der Propylenbrücken, die Kopplung deutlich geringer ausfallen müsste. Dass die Kopplung nur dreimal höher und die thermischen Elektrontransferraten nur eine Größenordnung höher für N∙+ sind als für F∙+ und G∙+, zeigt schließlich, dass intermolekularer Elektronentransfer in Festkörpermaterialien sehr effizient sein kann. Dies gilt insbesondere, wenn sich van der Waals Radien der Kohlenstoffe der interagierenden gestapelten pi-Systeme überlappen. Hinsichtlich der Donor-Akzeptor Dyaden, liegt der Fokus auf Triarylamin-Cyclophan-Naphthalin Diimide (TAA-CP-NDI) Verbindungen, die nahezu vollständige photoinduzierte Ladungstrennung zeigen. Des Weiteren zeigen deren ladungsgetrennte Zustände Lebenszeiten von Hunderten von Nanosekunden, was selten für solch einfache Dyaden ist. Im aktuellen Fall kann dies auf die Höhe der elektronischen Kopplung V (ca. 100 cm^–1) zurückgeführt werden. Diese kann vor allem auf die Integration der kleinsten Modellsysteme für pi-stacks, die CPs und die Knoten im niedrigsten unbesetzten Molekülorbital des NDI, die das Zentrum des NDI von seinen Stickstoffsubstituenten entkoppelt zurückgeführt werden. In Übereinstimmung mit den Studien über [2.2]- und [3.3]Paracyclophanbrücken beinhaltende, gemischt valente Verbindungen (siehe oben), weisen die hier untersuchten paracyclophanverbrückten Dyaden eine sehr ähnliche Kopplung auf, wenn es sich um Grundzustandsprozesse wie Ladungsrekombination handelt. Wenn allerdings Prozesse im angeregten Zustand, wie die Ladungstrennung in den TAA-CP-NDI Dyaden, betrachtet werden, muss berücksichtigt werden, dass die CP Orbitale an der Entstehung von Zwischenzuständen beteiligt sind, die wahrscheinlich Ladungstransfercharakter besitzen. In diesem Fall, ermöglicht das [2.2]Paracyclophan offensichtlich eine stärkere Kopplung als das [3.3]Paracyclophan. Eine weitere interessante Eigenschaft der hier untersuchten Dyaden ist die hohe Population des ladungsgetrennten Triplettzustands von etwa einem Drittel bezogen auf beide ladungsgetrennten Zustände, die durch die Singulett-Triplett-Umwandlung vom landungsgetrennten Singulettzustand erfolgt. Folglich agiert der Triplettzustand mit einer Lebenszeit von einigen Mikrosekunden als eine Art Puffer für den ladungsgetrennten Zustand, bevor eine Rekombination in den Grundzustand stattfindet und daher zu einer stark verlängerten Lebenszeit der gesamten ladungsgetrennten Zustände führt. Daher kann geschlussfolgert werden, dass das intersystem crossing und die Ladungsrekombinationsprozesse der ladungsgetrennten Zustände durch ein empfindliches Gleichgewicht von großer elektronischer Kopplung und großer Austauschwechselwirkung 2J (beides in Bezug auf Systeme mit einem Wechselwirkungspfad durch den Raum) bestimmt werden. Die letztere wird vermutlich durch eine Wechselwirkung zweiter Ordnung mit dem lokalen Triplettzustand, der energetisch nah am ladungsgetrennten Zustand liegt, bedingt. Diese Balance resultiert in langsamen Ladungsrekombinations- und Singulett-Triplett-Umwandlungsraten, die sich nur um eine Größenordnung unterscheiden. Verglichen mit den vielen bisher untersuchten Dyaden, die NDI beinhalten, sind diese Eigenschaften der hier untersuchten Dyaden, soweit mir bekannt, einzigartig. Vor allem die Kombination aus hoher Quantenausbeute des ladungsgetrennten Zustands, die langen Lebenszeiten und die ausreichende Energie des ladungsgetrennten Zustands machen das untersuchte System interessant für praktische Anwendungen. Des Weiteren ist die Aufschlüsselung der zugrunde liegenden Mechanismen von bedeutendem Wert für das zukünftige Design von Dyaden für praktische Anwendungen betreffs der Integration und Anpassung dieser vorteilhaften Eigenschaften.
17

Femtosecond spectroscopy of photolysis reactions in the liquid phase / Femtosekundenspektroskopie von Photolysereaktionen in der flüssigen Phase

Knorr, Johannes Walter January 2015 (has links) (PDF)
Within the framework of this thesis, photolysis reactions in the liquid phase were investigated by means of ultrafast optical spectroscopy. Apart from molecular studies dealing with the highly spin-dependent reactivity of diphenylcarbene (DPC) in binary solvent mixtures and ligand dissociation reactions of so-called CO-releasing molecules (CORMs), special emphasis was put on the implementation and characterization of methods improving and extending the signal detection in conventional pump–probe transient absorption setups. The assumption of DPC being an archetypal triplet-ground-state arylcarbene was recently questioned by matrix-isolation studies at low temperatures. DPC embedded in argon matrices revealed a hitherto unknown reactivity when the carbene environment was modified by small amounts of methanol dopant molecules. To complement these findings with liquid-phase experiments at room temperature, femtosecond pump–probe transient absorption spectroscopy with probing in the visible and ultraviolet regime was employed to unravel primary reaction processes of DPC in solvent mixtures. Supported by quantum chemical simulations conducted by our collaborators, it was shown that a competition between the reaction pathways occurs that not only depends on the solvent molecule near-by but also on its interaction with other solvent molecules. In-depth analysis of the solvation dynamics and the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Probing the transient absorption of molecules in the mid-infrared spectral range benefits from the high chemical specificity of molecules’ vibrational signatures. The technique of chirped-pulse upconversion (CPU) constitutes a promising alternative to standard direct multichannel MCT detection when accessing this spectral detection window. Hence, one chapter of this thesis is dedicated to a direct comparison between both detection methods. By conducting an exemplary pump–probe transient absorption experiment, it became evident, that the additional nonlinear interaction step is responsible for increased noise levels when using CPU. However, a correction procedure capable of removing these additional noise contributions—stemming from the fundamental laser radiation used for upconversion—was successfully tested. Perhaps most importantly for various spectroscopic applications, CPU scored with a significantly extended detection bandwidth owing to the high pixel numbers of modern CCD cameras. Transition-metal complexes capable of releasing small molecular messengers upon photoactivation are promising sources of gasotransmitters such as carbon monoxide (CO) or nitric oxide (NO) in biological applications. However, only little is known about the characteristic time scales of ligand dissociation in this class of molecules. For this purpose, two complexes were investigated with femtosecond time resolution: [Mn(CO)3(tpm)]Cl with tpm=tris(2-pyrazolyl)methane, a manganese tricarbonyl complex which has proven to be selective and cytotoxic to cancer cells, and [Mo(CO)2(NO)(iPr3tacn)]PF6 with iPr3tacn=1,4,7-triisopropyl-1,4,7-triazacyclononane, a molybdenum complex containing both carbonyl and nitrosyl ligands. By conducting pump–probe transient absorption measurements in different spectral probing windows supported by quantum chemical calculations and linear absorption spectroscopy, it was shown that both complexes are able to release one CO ligand within the first few picoseconds after UV excitation. The results complement existing studies which focused on the molecules’ ligand-releasing properties upon long-term exposure. The additional information gained on an ultrafast time scale provides a comprehensive understanding of individual reaction steps connected with ligand release in this class of molecules. Hence, the studies might create new incentives to develop modified molecules for specific applications. / Im Rahmen dieser Dissertation wurden Methoden der ultraschnellen optischen Spektroskopie angewandt, um Photolysereaktionen in der flüssigen Phase zu untersuchen. Neben molekularen Studien, welche sich mit der stark spin-abhängigen Reaktivität von Diphenylcarben (DPC) in binären Lösungsmittelgemischen und den Ligandendissoziationsreaktionen von sogenannten CO-freisetzenden Molekülen (CORMs, engl.: CO-releasing molecules) befassten, war ein wesentlicher Bestandteil dieser Arbeit die Implementierung und Charakterisierung von Methoden zur Verbesserung und Erweiterung der Signaldetektion in Aufbauten zur zeitaufgelösten Anrege-Abfrage-Spektroskopie. Die generelle Annahme, dass es sich bei DPC um ein archetypisches Triplett-Grundzustands-Arylcarben handelt, wurde kürzlich durch Matrixisolationsstudien in Frage gestellt. In jenen Untersuchungen offenbarte DPC, eingebettet in Argon-Matrizen, durch die Modifizierung der Carbenumgebung mit geringen Mengen an Methanol-Dotiermolekülen, eine bislang unbekannte Reaktivität. Komplementär dazu wurden im Rahmen dieser Arbeit Messungen in der flüssigen Phase bei Raumtemperatur durchgeführt. Femtosekundenzeitaufgelöste Anrege-Abfrage-Spektroskopie mit Abfragepulsen aus dem sichtbaren und ultravioletten Spektralbereich diente dabei zur Aufkläung der primären Reaktionsprozesse von DPC in Lösungsmittelgemischen. Es zeigte sich, unterstützt durch quantenchemische Simulationen unserer Kollaborateure, dass konkurrierende Reaktionspfade auftreten, welche nicht nur von den Lösungsmittelmolekülen in der unmittelbaren Umgebung abhängen, sondern auch von deren Wechselwirkung mit anderen Lösungsmittelmolekülen. Eine ausführliche Analyse, sowohl der Solvatationsdynamiken als auch der Menge an aufkommenden Intermediaten, bekräftigte die Bedeutung eines Komplexes der durch Wasserstoffbrückenbindung mit einem protischen Lösungmittelmolekül entsteht — in auffallender Ähnlichkeit zu Komplexen die bei kryogenen Temperaturen gefunden wurden. Das Abfragen der transienten Absorption eines Moleküls im mittleren Infrarot wird durch die hohe chemische Spezifität von molekularen Schwingungssignaturen begünstigt. Um dieses spektrale Fenster zu untersuchen, bietet die CPU-Methode (engl.: chirped-pulse upconversion) eine vielversprechende Alternative zur konventionellen direkten Mehrkanal MCT-Detektion. Daher widmet sich ein Kapitel dieser Arbeit einem direkten Vergleich der beiden Detektionsmethoden. Im Rahmen eines exemplarischen Anrege-Abfrage-Experiments zeigte sich, dass die zusätzliche nichtlineare Wechselwirkung zu einem erhöhten Rauschniveau bei der Verwendung der CPU-Technik führt. Dennoch konnte eine Korrekturprozedur erfolgreich getestet werden, die es ermöglicht, jene zusätzlichen Rauschbeiträge, die durch Fluktuationen der fundamentalen Laserstrahlung hervorgerufen werden, zu entfernen. Am wichtigsten für eine Vielzahl spektroskopischer Anwendungen ist jedoch, dass die CPU-Technik auf Grund der hohen Pixel-Anzahl moderner CCD-Kameras mit einer signifikant erhöhten Detektionsbandbreite punkten kann. Für biologische Anwendungen besteht steigendes Interesse an Molekülen zur kontrollierten Verabreichung von Gasotransmittern wie Kohlenstoffmonoxid (CO) oder Stickstoffmonoxid (NO). Vielversprechend sind hierbei Übergangsmetallkomplexe, welche in der Lage sind, jene kleinen Signalmoleküle nach Photoanregung freizusetzen. Dennoch ist nur sehr wenig über die charakteristischen Zeitskalen der Ligandendissoziation in dieser Molekülklasse bekannt. Daher wurden im Rahmen dieser Arbeit zwei Komplexe mit Femtosekundenzeitauflösung untersucht: [Mn(CO)3(tpm)]Cl mit tpm=tris(2-pyrazolyl)methane, ein Mangankomplex mit drei Carbonylliganden, desses selektive und zytotoxische Wirkung gegenüber Krebszellen nachgewiesen ist, und [Mo(CO)2(NO)(iPr3tacn)]PF6 mit iPr3tacn=1,4,7-triisopropyl-1,4,7-triazacyclononane, ein Molybdänkomplex, der sowohl CO- als auch NO-Liganden enthält. Mit Hilfe von Anrege-Abfrage-Spektroskopie in verschiedenen spektralen Bereichen, unterstützt durch quantenchemische Berechnungen und lineare Absorptionsspektroskopie, konnte gezeigt werden, dass beide Komplexe jeweils einen CO-Liganden innerhalb der ersten Pikosekunden nach UV-Anregung abspalten können. Die Ergebnisse ergänzen bestehende Studien, welche die Ligandenfreisetzungseigenschaften der Moleküle unter Langzeitbelichtung untersuchten. Die zusätzliche Information – gewonnen auf der ultraschnellen Zeitskala – ermöglicht ein umfassendes Verständnis der einzelnen Reaktionsschritte, welche mit der Ligandendissoziation in dieser Molekülklasse verbunden sind. Daher könnten die Studien neue Anreize zur Entwicklung modifizierter Moleküle schaffen, welche für spezifische Anwendungen geeignet sind.
18

Emissionsdetektierte Femtosekunden-Spektroskopie an polyatomaren Molekülen

Nilsson, Qingrui An. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--München.
19

Dynamics of photoinduced charge transfer processes in modified DNA and an engineered protein

Hess, Stephan. January 2002 (has links) (PDF)
München, Techn. Univ., Diss., 2002.
20

Quantenmechanische Modellierung der Photodynamik und Femtosekunden-Spektroskopie komplexer molekularer Systeme

Hahn, Susanne. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Freiburg (Breisgau).

Page generated in 0.1885 seconds