• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural basis for iron (II) metabolism in encapsulated ferritin-like proteins

He, Didi January 2017 (has links)
Ferritins are ubiquitous proteins that serve the dual-function of iron reservoir and sequestering the Fe(II) toxicity. The function of ferritins totally depends on the characteristic spherical structure with a di-iron centre performing the iron oxidation and a hallow cavity enclosing the iron minerals in a bioavailable form. I have characterised the structure, assembly and function of a new member of ferritin superfamily that is natively enclosed within an encapsulin shell. Encapsulin proteins are structurally-related to a virus capsid and form 60-meric or 180-meric icosahedrons. I show that this encapsulin associated ferritin-like protein (EncFtn) possesses two main alpha helices, which assemble in a metal-dependent manner to form a ferroxidase centre at a dimer interface. EncFtn adopts an annular decamer structure in contrast to the 24-meric classical ferritins or 12-meric mini-ferritin (DPS). The resemblance of the dimeric EncFtn and monomeric classical ferritins suggests that it is likely that classical ferritin evolves from EncFtn because of the gene duplication. EncFtn is a catalytically active ferroxidase but with only a limited iron binding ability due to its open structure. The encapsulin itself is not able to oxidise Fe(II), but is able to store about 2200 iron ions. I have demonstrated that the EncFtn must be housed in the encapsulin to achieve a maximum loading of approximately 4200 iron ions. The encapsulin nanocompartments are widely-distributed in both eubacteria and archaeon with distinct life styles and represent a distinct class of iron storage system, where iron oxidation and mineralisation are distributed between two proteins.

Page generated in 0.09 seconds