• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The stress-strain data of the hip capsule ligaments are gender and side independent suggesting a smaller contribution to passive stiffness

Pieroh, Philipp, Schneider, Sebastian, Lingslebe, Uwe, Sichting, Freddy, Wolfskämpf, Thomas, Josten, Christoph, Böhme, Jörg, Hammer, Niels, Steinke, Hanno 07 December 2016 (has links) (PDF)
Background: The ligaments in coherence with the capsule of the hip joint are known to contribute to hip stability. Nevertheless, the contribution of the mechanical properties of the ligaments and gender- or side-specific differences are still not completely clear. To date, comparisons of the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.g. the iliotibial tract, were not performed. Materials & Methods: Hip capsule ligaments were obtained from 17 human cadavers (9 females, 7 males, 13 left and 8 right sides, mean age 83.65 ± 10.54 years). 18 iliofemoral, 9 ischiofemoral and 17 pubofemoral ligaments were prepared. Uniaxial stress-strain properties were obtained from the load-deformation curves before the secant elastic modulus was computed. Strain, elastic modulus and cross sections were compared. Results: Strain and elastic modulus revealed no significant differences between the iliofemoral (strain 129.8 ± 11.1%, elastic modulus 48.8 ± 21.4 N/mm2), ischiofemoral (strain 128.7 ± 13.7%, elastic modulus 37.5 ± 20.4 N/mm2) and pubofemoral (strain 133.2 ± 23.7%, elastic modulus 49.0 ± 32.1 N/mm2) ligaments. The iliofemoral ligament (53.5 ± 15.1 mm2) yielded a significantly higher cross section compared to the ischiofemoral (19.2 ± 13.2 mm2) and pubofemoral (15.2 ± 7.2 mm2) ligament. No significant gender- or side-specific differences were determined. A comparison to the published data on the iliotibial tract revealed lower elasticity and less variation in the ligaments of the hip joint.
2

The stress-strain data of the hip capsule ligaments are gender and side independent suggesting a smaller contribution to passive stiffness

Pieroh, Philipp, Schneider, Sebastian, Lingslebe, Uwe, Sichting, Freddy, Wolfskämpf, Thomas, Josten, Christoph, Böhme, Jörg, Hammer, Niels, Steinke, Hanno January 2016 (has links)
Background: The ligaments in coherence with the capsule of the hip joint are known to contribute to hip stability. Nevertheless, the contribution of the mechanical properties of the ligaments and gender- or side-specific differences are still not completely clear. To date, comparisons of the hip capsule ligaments to other tissues stabilizing the pelvis and hip joint, e.g. the iliotibial tract, were not performed. Materials & Methods: Hip capsule ligaments were obtained from 17 human cadavers (9 females, 7 males, 13 left and 8 right sides, mean age 83.65 ± 10.54 years). 18 iliofemoral, 9 ischiofemoral and 17 pubofemoral ligaments were prepared. Uniaxial stress-strain properties were obtained from the load-deformation curves before the secant elastic modulus was computed. Strain, elastic modulus and cross sections were compared. Results: Strain and elastic modulus revealed no significant differences between the iliofemoral (strain 129.8 ± 11.1%, elastic modulus 48.8 ± 21.4 N/mm2), ischiofemoral (strain 128.7 ± 13.7%, elastic modulus 37.5 ± 20.4 N/mm2) and pubofemoral (strain 133.2 ± 23.7%, elastic modulus 49.0 ± 32.1 N/mm2) ligaments. The iliofemoral ligament (53.5 ± 15.1 mm2) yielded a significantly higher cross section compared to the ischiofemoral (19.2 ± 13.2 mm2) and pubofemoral (15.2 ± 7.2 mm2) ligament. No significant gender- or side-specific differences were determined. A comparison to the published data on the iliotibial tract revealed lower elasticity and less variation in the ligaments of the hip joint.

Page generated in 0.0676 seconds