• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis, Nanocrystal Deposition and Characterization of 2D Transition Metal Trihalide Solid Solutions

Froeschke, Samuel 18 December 2023 (has links)
The present work investigates the synthesis and nanocrystal deposition of some selected solid solutions of transition metal trihalides with 2-dimensional crystal structure - specifically, the solutions of CrCl3 – CrBr3, CrBr3 – CrI3, RhCl3 – RhBr3, RhBr3 – RhI3, CrCl3 – RuCl3, and CrCl3 – MoCl3. Theoretical simulations of phase equilibria and partial pressures were applied to estimate suitable synthesis conditions for phase-pure solid solutions, before the syntheses were subsequently performed practically. It was found that for most of the systems investigated, special conditions, such as an appropriate excess of halogen or a specific temperature range, are crucial for successful synthesis. The purity of the corresponding products was confirmed by X-ray powder diffraction. These measurements were further used to investigate the course of the lattice parameters within the series of mixtures in order to be able to observe potential deviations from ideal mixing behavior of the parent compounds. These investigations revealed only small or no deviation from Vegard’s law for all investigated systems except CrCl3 – MoCl3. For CrCl3 – CrBr3, CrBr3 – CrI3, RhCl3 – RhBr3, RhBr3 – RhI3 and CrCl3 – RuCl3, the prepared powder material with different compositions was further used for the deposition of high-quality nanocrystals on a substrate. For this purpose, chemical vapor transport was applied. Suitable deposition conditions were also previously estimated by simulations before finally performing an experimental optimization of the transport conditions. The 2D nanocrystals thus obtained generally exhibit heights in the low 2-digit nm range, while monolayers were also observed in the case of RhCl3 – RhBr3. The compositions of the deposited structures were analyzed by energy dispersive X-ray spectroscopy to detect possible enrichment effects of the solid solutions during vapor transport. With the knowledge of these relationships, nanocrystals with controllable composition can be deposited by the developed method. The high quality of the deposited nanocrystals was ensured by transmission electron microscopy, selected area electron diffraction, and X-ray photoemission spectroscopy. Depending on the system, selected material properties were determined using powder samples, bulk or nanocrystals, such as the photoluminescence behavior of the CrCl3 – CrBr3 and CrBr3 – CrI3 series or the optical band gap characteristics of the RhCl3 – RhBr3 and RhBr3 – RhI3 systems. Unlike for the previously mentioned systems, in the case of CrCl3 – MoCl3, strong deviations from an ideal linear course of the lattice parameters were observed, where several phase regions can be distinguished within the series. To explain these anomalies, structural models were developed that explain the anomalies with the formation of differently arranged Mo-Mo dimers within the crystal structure. These hypotheses were investigated by different characterization methods such as IR spectroscopy or SQUID measurements and confirmed the hypotheses within the limits of the validity of the applied methods. The simulative and experimental methods developed in this work can be applied to numerous similar systems of transition metal trihalides, but should also work for other classes of compounds. The nanocrystals thus made available are suitable for follow-up studies with respect to property changes upon downscaling.:1. Introduction 1 2. Theoretical Background 3 2.1. Properties of Selected Transition Metal Trihalides and Their Solid Solutions . . . 3 2.1.1. Crystal Structures of 2D Transition Metal Trihalides . . . . . . . . . . . . . 4 2.1.2. CrX3 (X = Cl, Br, I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. RhX3 (X = Cl, Br, I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4. RuCl3 and CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.5. MoCl3 and CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Solid Solution Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1. Structural Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2. Chemical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3. Thermodynamic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Chemical Vapor Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. Bulk and Nanocrystal Growth by CVT . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2. CVT of Solid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3. Simulation of CVT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4. Vapor Phase Chemistry of Selected Transition Metal Trihalides . . . . . . . . . . . 15 2.4.1. CrCl3, CrBr3 and CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2. RhCl3, RhBr3 and RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3. RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.4. MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Material and Methods 19 3.1. Chemicals and Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2. Synthesis, Purification and CVT of Materials . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1. General Aspects of Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2. CrX3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.3. CrCl3-CrBr3 and CrBr3-CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.4. RhX3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 X Table of Contents 3.2.5. RhCl3-RhBr3 and RhBr3-RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.6. Purification of commercial RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.7. CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.8. MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.9. CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.10. Delamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3. Thermodynamic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1. Estimation of Unknown Thermodynamic Data . . . . . . . . . . . . . . . . 26 3.3.2. Simulations with Tragmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4. Instrumental Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.2. Powder X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3. Single-Crystal X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.4. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy 27 3.4.5. Transmission Electron Microscopy and Selected Area Electron Diffraction 28 3.4.6. Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.7. Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.8. Infrared Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.9. Diffuse Reflection Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.10. Photoluminescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.11. X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.12. Inductively Coupled Plasma Optical Emission Spectroscopy . . . . . . . . 30 3.4.13. Simultaneous Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.14. Electron Energy-Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.15. Superconducting Quantum Interference Device Measurements . . . . . . 31 4. Results and Discussion 32 4.1. CrCl3 – CrBr3 and CrBr3 – CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 32 4.1.2. Solid Solution Synthesis and Basic Properties . . . . . . . . . . . . . . . . . 37 4.1.3. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.4. Nanocrystal Growth, Enrichment Effects and Delamination . . . . . . . . . 45 4.1.5. Further Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2. RhCl3-RhBr3 and RhBr3-RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 55 4.2.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.3. Thermochemical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.4. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.5. Crystal Growth and Delamination . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.6. Further Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3. CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 73 4.3.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 XI Table of Contents 4.3.3. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.4. Nanocrystal Growth, Enrichment Effects and Delamination . . . . . . . . . 78 4.3.5. Further Characterization of As-Grown Nanocrystals . . . . . . . . . . . . . 81 4.4. CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 84 4.4.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.3. Structural Investigation by pXRD . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.4. Further Structural Characterization . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.5. Magnetic Investigations of Powder Samples by SQUID . . . . . . . . . . . . 98 4.4.6. Summary of Characterization Results . . . . . . . . . . . . . . . . . . . . . . 101 4.4.7. CVT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5. Summary and Outlook 104 References 107 List of Figures 120 List of Tables 121 Abbreviations 122 Used Symbols 124 A. Appendix 126 A.1. Atom Positions and Space Group Transformations of 2D TMTH . . . . . . . . . . 126 A.2. Raw pXRD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A.3. Refined Lattice Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.4. Additional Data of Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.5. EDX-Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.6. Thermodynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 / Die vorliegende Arbeit beschäftigt sich mit der Synthese und Nanokristallabscheidung von einigen ausgewählten Festkörperlösungen von Übergangsmetalltriahlogeniden mit 2-dimensionaler Kristallstruktur - konkret die Lösungen von CrCl3 – CrBr3, CrBr3 – CrI3, RhCl3 – RhBr3, RhBr3 – RhI3, CrCl3 – RuCl3 und CrCl3 – MoCl3. Dabei wurden theoretische Simulationen der Phasengleichgewichte und Partialdrücke angewandt um geeignete Synthesebedingungen für phasenreine Festkörperlösungen abzuschätzen und diese Synthesen im Anschluss entsprechend zu realisieren. Dabei zeigte sich, dass für die meisten der untersuchten Mischphasen spezielle Bedingungen, wie z.B. ein entsprechender Halogenüberschuss oder ein enges Temperaturfenster entscheidend für die erfolgreiche Synthese sind. Die Phasenreinheit der entsprechenden Produkte wurde mittels Röntgenpulverdiffraktometrie bestätigt. Diese Messungen wurden weiterhin zur Untersuchung des Verlaufs der Gitterparameter innerhalb der Mischungsreihen verwendet um potenzielle Abweichungen von idealem Mischungsverhalten der Randverbindungen beobachten zu können. Dabei zeigte sich für alle Mischungen außer CrCl3 – MoCl3 nur geringe oder keine Abweichungen von der Vegard’schen Regel. Für CrCl3 – CrBr3, CrBr3 – CrI3, RhCl3 – RhBr3, RhBr3 – RhI3 und CrCl3 – RuCl3 wurde das hergestellte Pulvermaterial mit verschiedenen Zusammensetzungen für die Abscheidung von hochqualitativen Nanokristallen auf einem Substrat verwendet. Dafür wurde die Methode des chemischen Gasphasentransports angewandt, wobei ebenfalls geeignete Abscheidungsbedingungen zuvor mittels Simulationen ermittelt wurden, bevor schlussendlich eine experimentelle Optimierung der Transportbedingungen durchgeführt wurde. Die damit erhaltenen 2D Nanokristalle weisen in der Regel Höhen im niedrigen 2-stelligen nm-Bereich auf, wobei im Fall von RhCl3 – RhBr3 auch direkt abgeschiedene Monolagen beobachtet wurden. Die Zusammensetzungen der abgeschiedenen Strukturen wurden intensiv mittels energiedispersiver Röntgenspektroskopie analysiert um mögliche Anreicherungseffekte der Festkörperlösungen während des Gasphasentransports zu detektieren. Dabei zeigte sich, dass eine Anreicherung insbesondere im Fall der kationischen Festkörperlösungen auftritt, während bei anionischen Lösungen ein kongruenter Transport vorherrscht. Mithilfe der Kenntnisse dieses Zusammenhangs lassen sich Nanokristalle mit kontrollierbarer Zusammensetzung über die entwickelte Methode abscheiden. Die hohe Qualität der abgeschiedenen Nanostrukturen wurde mittels Transmissionselektronmikroskopie, Feinbereichselektronenbeugung und Röntgenphotoelektronenspektroskopie sichergestellt. Je nach System wurden weitere ausgewählte Materialeigenschaften anhand von Pulver-Proben, bulk- oder Nanokristallen ermittelt, wie beispielsweise das Photolumineszenzverhalten der CrCl3 – CrBr3 und CrBr3 – CrI3 Reihen oder den Verlauf der optischen Bandlücke der RhCl3 – RhBr3 und RhBr3 – RhI3 Systeme. Anders als für die zuvor beschriebenen Systeme wurden im Fall von CrCl3 – MoCl3 starke Abweichungen von idealem Verlauf der Gitterparameter beobachtet, wobei innerhalb der Mischungsreihe mehrere Phasengebiete unterschieden werden können. Zur Erklärung dieser Anomalien wurden verschiedene Strukturmodelle erdacht, welche die Bildung von unterschiedlich angeordneten Mo-Mo-Dimeren innerhalb der Kristallstruktur beschreiben. Diese Hypothesen wurden mittels verschiedener Charakterisierungsmethoden wie z.B. IR-Spektroskopie oder SQUID-Messungen untersucht und im Rahmen der Aussagekraft der Messmethoden bestätigt. Die in dieser Arbeit entwickelten simulativen und experimentellen Methoden lassen sich auf zahlreiche ähnliche Systeme von Übergangsmetalltrihalogeniden übertragen, sind aber auch auf andere Verbindungsklassen anwendbar. Die damit verfügbar gemachten Nanokristalle sind für Folgeuntersuchungen im Hinblick auf die Eigenschaftsveränderungen bei der Nanoskalierung geeignet.:1. Introduction 1 2. Theoretical Background 3 2.1. Properties of Selected Transition Metal Trihalides and Their Solid Solutions . . . 3 2.1.1. Crystal Structures of 2D Transition Metal Trihalides . . . . . . . . . . . . . 4 2.1.2. CrX3 (X = Cl, Br, I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.3. RhX3 (X = Cl, Br, I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.4. RuCl3 and CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.5. MoCl3 and CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Solid Solution Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1. Structural Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2. Chemical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.3. Thermodynamic Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Chemical Vapor Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. Bulk and Nanocrystal Growth by CVT . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2. CVT of Solid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.3. Simulation of CVT Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4. Vapor Phase Chemistry of Selected Transition Metal Trihalides . . . . . . . . . . . 15 2.4.1. CrCl3, CrBr3 and CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2. RhCl3, RhBr3 and RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3. RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.4. MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. Material and Methods 19 3.1. Chemicals and Substrates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2. Synthesis, Purification and CVT of Materials . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1. General Aspects of Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.2. CrX3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.3. CrCl3-CrBr3 and CrBr3-CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.4. RhX3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 X Table of Contents 3.2.5. RhCl3-RhBr3 and RhBr3-RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.6. Purification of commercial RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.7. CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.8. MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.9. CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.10. Delamination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3. Thermodynamic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.1. Estimation of Unknown Thermodynamic Data . . . . . . . . . . . . . . . . 26 3.3.2. Simulations with Tragmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4. Instrumental Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.1. Optical Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.2. Powder X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.4.3. Single-Crystal X-ray Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4.4. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy 27 3.4.5. Transmission Electron Microscopy and Selected Area Electron Diffraction 28 3.4.6. Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.4.7. Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.8. Infrared Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.9. Diffuse Reflection Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.10. Photoluminescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.11. X-ray Photoelectron Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.12. Inductively Coupled Plasma Optical Emission Spectroscopy . . . . . . . . 30 3.4.13. Simultaneous Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.14. Electron Energy-Loss Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.15. Superconducting Quantum Interference Device Measurements . . . . . . 31 4. Results and Discussion 32 4.1. CrCl3 – CrBr3 and CrBr3 – CrI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.1.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 32 4.1.2. Solid Solution Synthesis and Basic Properties . . . . . . . . . . . . . . . . . 37 4.1.3. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.1.4. Nanocrystal Growth, Enrichment Effects and Delamination . . . . . . . . . 45 4.1.5. Further Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2. RhCl3-RhBr3 and RhBr3-RhI3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.2.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 55 4.2.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.3. Thermochemical Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.4. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2.5. Crystal Growth and Delamination . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2.6. Further Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4.3. CrCl3-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.3.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 73 4.3.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 XI Table of Contents 4.3.3. Structural Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3.4. Nanocrystal Growth, Enrichment Effects and Delamination . . . . . . . . . 78 4.3.5. Further Characterization of As-Grown Nanocrystals . . . . . . . . . . . . . 81 4.4. CrCl3-MoCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4.4.1. Thermodynamic and CVT Simulations . . . . . . . . . . . . . . . . . . . . . 84 4.4.2. Solid Solution Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.4.3. Structural Investigation by pXRD . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.4.4. Further Structural Characterization . . . . . . . . . . . . . . . . . . . . . . . 93 4.4.5. Magnetic Investigations of Powder Samples by SQUID . . . . . . . . . . . . 98 4.4.6. Summary of Characterization Results . . . . . . . . . . . . . . . . . . . . . . 101 4.4.7. CVT Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5. Summary and Outlook 104 References 107 List of Figures 120 List of Tables 121 Abbreviations 122 Used Symbols 124 A. Appendix 126 A.1. Atom Positions and Space Group Transformations of 2D TMTH . . . . . . . . . . 126 A.2. Raw pXRD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 A.3. Refined Lattice Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 A.4. Additional Data of Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 A.5. EDX-Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 A.6. Thermodynamic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2

Dünne Palladium-Wasserstoff-Schichten als Modellsystem: Thermodynamik struktureller Phasenübergänge unter elastischen und mikrostrukturellen Zwangsbedingungen / Palladium-hydrogen thin films as a model system: Thermodynamics of structural phase transitions with elastic and microstructural constraints

Wagner, Stefan 15 July 2014 (has links)
In dieser Arbeit wurde am Modell der Hydridbildung in Wasserstoff-beladenen, 5 nm bis 2000 nm dünnen Palladium-Schichten der Einfluß der Schichtdicke sowie mikrostruktureller und elastischer Zwangsbedingungen auf die Thermodynamik von Phasenübergängen 1. Ordnung untersucht. Grundlage der Untersuchungen ist eine H-induzierte Volumendehnung des Palladiums, die infolge eines Konzentrationshubs ∆c_H bei der Hydridbildung sprunghaft erfolgt. Aus der Volumendehnung resultieren an der Schicht-Substrat-Grenzfläche und an inneren Grenzflächen wie Phasen- und Korngrenzen hohe mechanische Spannungsgradienten, die additiv zum chemischen Potential μ_H des Wasserstoffs beitragen und die Stabilität der Hydridphase verändern. Der Einfluß mechanischer Spannungen auf das chemische Potential wird durch die Mikrostruktur der Schichten modifiziert, die unterschiedliche H-Einlagerungsplätze im Palladium-Gitter mit einem Spektrum unterschiedlicher Platzenergien bereitstellt und die Kanäle eines möglichen Spannungsabbaus durch plastische Deformation der Schichten bestimmt. Ziel dieser Arbeit war es, die sich überlagernden Einflüsse der Mikrostruktur und mechanischer Spannungen auf die Thermodynamik der Hydridbildung experimentell zu separieren und aus ihnen resultierende Abweichungen von der Thermodynamik des massiven Pd-H-Systems unter Bezugnahme auf thermodynamische Modellvorstellungen zu quantifizieren. Durch gezielte Wahl der Herstellungsbedingungen präparierte Pd-Schichten texturiert nanokristalliner, multi-orientiert polykristalliner und epitaktischer Mikrostruktur wurden schrittweise mit Wasserstoff beladen. H-induzierte Änderungen des Spannungszustands, die Hydridbildung und plastische Änderungen der Schichten wurden in-situ insbesondere mit Methoden der Röntgendiffraktometrie, durch die Messung der Substratverbiegung, des elektrischen Widerstandes, der akustischen Emission der Schichten sowie mittels STM und Proton-Proton-Streuung untersucht. Hinsichtlich mikrostruktureller Änderungen der Schichten bei H-Beladung wurden Kaskaden kritischer Schichtdicken und Spannungszustände des Einsetzens plastischer Deformation gefunden. Bereits im Bereich der elastischen Schichtdehnung wurden diskrete Relaxations-Ereignisse beobachtet, die auf die Bewegung intrinsischer Defekte zurückgeführt wurden. Für Schichtdicken unterhalb von 22-34 nm wurde ein neuer Typ eines partiell kohärenten Phasenübergangs belegt, bei dem die Phasengrenzflächen während des gesamten Phasenübergangs kohärent verbleiben. Unter dem Einfluß der unterschiedlichen Mikrostrukturen und Spannungszustände der Schichten wurde eine signifikante Reduktion der elastischen H-H-Wechselwirkung – der Triebkraft der Hydridbildung – um 20-50 % gegenüber dem massiven System belegt. Für die Schichten beträgt E_HH 15-30 kJ/mol_H, während im massiven System E_HH = 36.8 kJ/mol_H. Der elastische Beitrag zur Reduktion der H-H-Wechselwirkung beträgt 2-5 kJ/mol_H. Er wächst für partiell kohärente Entmischung rasch an. Die entsprechenden Hydridbildungsenthalpien sind in Schichten um bis zu 3 kJ/mol_H erhöht. In lokal durch Faltenbildung relaxierten Schichten kann dies das räumliche Nebeneinander der α-Phase in haftenden Schichtbereichen und der Hydridphase in den Falten erzwingen. Darüber hinaus wurde gezeigt, daß die Druck-Konzentrations-Isothermen dünner Pd-H-Schichten im Bereich des Phasenübergangs unter dem Einfluß nicht-linearer mechanischer Spannungen eine stetige Steigung aufweisen können. Dies macht eine Modifikation der Grenzbedingung zur Bestimmung der kritischen Temperatur der Hydridbildung erforderlich, bei der die Steigung ∂μ_H/∂c_H | T=T_c explizit ausgewertet wird. Die resultierenden kritischen Temperaturen der Pd-H-Schichten sind bis zu 40 % gegenüber dem massiven System reduziert. T_c ist 340-490 K für die Schichten, während T_c = 563 K für das massive System. In allen Schichten wurde bei 300 K noch immer ein Phasenübergang gefunden. Insgesamt ließen sich die beobachteten Änderungen der Thermodynamik zumeist direkt an die Mikrostruktur und den Spannungszustand der Schichten koppeln, während allein an die Schichtdicke gebundene Finite-Size-Effekte bei den untersuchten Schichten von untergeordneter Bedeutung sind.

Page generated in 0.0629 seconds