• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 87
  • 26
  • 18
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 60
  • 45
  • 44
  • 37
  • 30
  • 24
  • 24
  • 21
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Development and analysis of Photonic Crystal Fiber Mach-Zehnder interferometer for highly sensitive detection and quantification of gases

Nazeri, Kaveh 13 October 2020 (has links)
Gas sensing is essential for safety and maintenance operations in many industries, including power generation, petrochemical, capture and storage technologies, and the food-processing sector. The properties of fiber-optic sensors make them a superior choice for environmental monitoring applications, especially in extreme conditions, and particularly when compared against conventional electro-optical sensors. Their advantageous properties include immunity to electromagnetic radiation, high temperature durability, high sensitivity and the ability for high resolution detection, as well as multifunctional sensing capabilities such as temperature, humidity, pressure, strain, and corrosion. Among different types of interferometers, Mach-Zehnder Interferometers (MZI) have received significant attention because they are robust, compact, and have high levels of precision. In this dissertation, we present an in-line and compact MZI point sensor designed for sensing refractive index. In comparison with various types of interferometers, fiber MZI based RI sensing was selected based on its enhanced sensitivity and fabrication simplicity. The MZI sensor is developed using photonic crystal fiber and demonstrated for high sensitivity detection and measurement of pure gases. The transmission spectrum of MZI sensors is formed by interference between the cladding and core modes. To construct the device, the sensing element fiber was placed and aligned between two single-mode fibers with air gaps at each side. Two linear-translation micro stages were used to accurately differ and adjust gap lengths from 0 to 5mm. Great measurement repeatability was shown in the cyclic test for the detection of various gases such as methane and helium. A high RI measurement resolution of 2.1 E-7 and a sensitivity of 4629 nm/RIU was achieved, which is among the highest reported. Results show that the sensitivity of the fabricated MZI increases from 3000 nm/RIU to 4600 nm/RIU when the length of the sensing element fiber decreases from 5 mm to 3.3 mm. Furthermore, the device was packaged to demonstrate the laboratory-scale monitoring, as well as leakage detection of different concentrations of CO2 in both subsurface soil and aqueous environments. Two water resistant but gas permeable membranes were used to package the sensor, to achieve a good balance of CO2 permeability and water resistance. The experimental study of this work reveals the great potential of the fiber-optic approach for environmental monitoring of CO2. This study also explores other potential applications. Three types of sensors were fabricated using the proposed configuration employing 4 mm stub of (i) solid core Photonic Crystal Fiber (PCF), (ii) 10 µm Hollow core PCF (HC-PCF), and (iii) 20 µm HC-PCF as the sensing elements. We compared the performance of these sensors for detecting and measuring the quantity of gas present. As the transmission signals correspond to the frequency components in the sensor’s Fast Fourier Transform (FFT) spectrum, the effect of gap distance on the number and amplitude distribution of the modes was examined in an effort to optimize the design elements. The MZI sensors are highly sensitive to low percentages of CH4 and CO2, making them suitable for greenhouse gas measurement. / Graduate
102

Multichannel Analysis of Surface Waves Using Distributed Fiber Optic Sensors

Galan-Comas, Gustavo 11 December 2015 (has links)
The Multichannel Analysis of Surface Waves (MASW) method traditionally uses an array of collinear vertical geophones to measure seismic wave propagation velocity at discrete points along the ground surface. Distributed fiber optic sensors (FOS) measure the average longitudinal strain over discrete lengths (i.e., zones) of a buried fiber optic cable. Such strain measurements can be used to assess ground motion and thus analyzed with the MASW method. To evaluate the feasibility of using FOS strain measurements in the MASW method, field experiments were conducted with both FOS and surface vertical geophones. Synthetic seismograms were also used to compare FOS to vertical and horizontal geophones and investigate the effect of installation depth and sensor type. Through the MASW method, shear wave (Vs) profiles from the FOS showed comparable results to those obtained with the geophones and achieved the same degree of uncertainty from the non-uniqueness of the MASW inversion process.
103

Development of Ceramic Thin Films for High Temperature Fiber Optic Sensors

Jiang, Hongmin 24 September 2013 (has links)
No description available.
104

New Organic/inorganic Hybrid Sol-gel Nanocomposite Materials For Raman Gain In Fiber Optics

Andrasik, Stephen James 01 January 2004 (has links)
The recent increased availability of additional wavelengths in the telecommunications window of about 1300-1600 nm has generated an interest in new optical materials and devices that can operate outside the normally used regions of 840 nm, 1310 nm, and 1550 nm. Specifically, methods to amplify fiber optical data transmission in the regions where there is limited or no existing methods to achieve amplification is of interest in the chemistry and photonic communities. Raman gain is one method that has been proposed to passively amplify optical data transmission through a distributed process. Amplification is obtained through a nonlinear light scattering process where an optical wave is amplified at the expense of a higher frequency pump wave. Multiple wavelengths can be evenly amplified simultaneously in a desired region by specific selection of one or more pump wavelengths. Herein, the synthesis and characterization of new hybrid inorganic/organic sol-gels and monomers capable of producing broad wavelength Raman scattering over a spectral range of 1200-1670 nm are presented. The synthetic methodology developed facilitates the systematic approach to produce sol-gel derivatives with functional groups known to be strongly Raman scattering. Additionally, a method to synthesize and characterize a large number of different compounds using a combinatorial approach was demonstrated. Thio based derivatives of sulfonyldiphenol, isopropylidenediphenol, and triallyloxy triazine were synthesized in addition to thio derivatives of poly(hydroxystyrene). Micro-Raman spectra of the hybrid sol-gels, thiobased derivatives, and IR spectra of select sol-gel monomers were obtained.
105

Optical Fibers for Space-Division Multiplexed Transmission and Networking

Xia, Cen 01 January 2015 (has links)
Single-mode fiber transmission can no longer satisfy exponentially growing capacity demand. Space-division multiplexing (SDM) appears to be the only way able to dramatically improve the transmission capacity, for which, novel optical fiber is one of the key technologies. Such fibers must possess the following characteristics: 1) high mode density per cross-sectional area and 2) low crosstalk or low modal differential group delay (DMGD) to reduce complexity of digital signal processing. In this dissertation, we explore the design and characterization of three kinds of fibers for SDM: few-mode fiber (FMF), few-mode multi-core fiber (FM-MCF) and coupled multi-core fiber (CMCF) as well as their applications in transmission and networking. For the ultra-high density need of SDM, we have proposed the FMMCF. It combines advantages of both the FMF and MCF. The challenge is the inter-core crosstalk of the high-order modes. By applying a hole-assisted structure and careful fiber design, the LP11 crosstalk has been suppressed down to -40dB per km. This allows separate transmission on LP01 and LP11 modes without penalty. In fact, a robust SDM transmission up to 200Tb/s has been achieved using this fiber. To overcome distributed modal crosstalk in conjunction with DMGD, supermodes in CMCFs have been proposed. The properties of supermodes were investigated using the coupled-mode theory. The immediate benefits include high mode density and large effective area. In supermode structures, core-to-core coupling is exploited to reduce modal crosstalk or minimize DMGD. In addition, higher-order supermodes have been discovered in CMCFs with few-mode cores. We show that higher-order supermodes in different waveguide array configurations can be strongly affected by angle-dependent couplings, leading to different modal fields. Analytical solutions are provided for linear, rectangular and ring arrays. Higher-order modes have been observed for the first time using S2 imaging method. Finally, we introduce FMF to gigabit-capable passive optical networks (GPON). By replacing the conventional splitter with a photonic lantern, upstream combining loss can be eliminated. Low crosstalk has been achieved by a customized mode-selective photonic lantern carefully coupled to the FMF. We have demonstrated the first few-mode GPON system with error-free performance over 20-km 3-mode transmission using a commercial GPON system carrying live Ethernet traffic. We then scale the 3-mode GPON system to 5-mode, which resulted in a 4dB net gain in power budget in comparison with current commercial single-mode GPON systems.
106

Direct Nonlinear Optics Measurements Of Raman Gain In Bulk Glasses And Estimates Of Fiber Performance

Stegeman, Robert 01 January 2006 (has links)
The need for more bandwidth in communications has stimulated the search for new fiberizable materials with properties superior to fused silica which is the current state-of-the-art. One of the key properties is Raman gain by which a pump beam amplifies a signal beam of longer wavelength. An apparatus capable of directly measuring the spectral dependence and absolute magnitude of the material Raman gain coefficient using nonlinear optics techniques has been built. Using radiation from a 1064 nm Nd:YAG laser as the pump and from a tunable Optical Parametric Generator and Amplifier as the signal, the Raman gain spectrum was measured for different families of glass samples with millimeter thickness. A number of glass families were investigated. Tellurites with added oxides of tungsten, niobium, and thallium produced the largest Raman gain coefficients of any oxide family reported to date, typically 30-50 times higher than that of fused silica. On the other hand, phosphate families were found with spectrally broad Raman gain response, 5 times broader than fused silica and flat to [plus or minus] dB over the full spectral range in some compositions. Although the chalcogenides were found to photodamage easily, coefficients 50 - 80 times that of fused silica were measured. Finally, a numerical study was undertaken to predict the theoretical performance and noise properties of tellurite fibers for communications. Included in the computer modeling were linear loss; the interaction among multiple pumps and signals; forward and/or backward propagating pump beams; forward, backward and double Rayleigh scattering; noise properties of amplifiers; excess noise, etc. This led to a comparison of the optical signal-to-noise characteristics for Raman gain in a tellurite versus a silica fiber.
107

Structural Health Monitoring Using Novel Sensing Technologies And Data Analysis Methods

Malekzadeh, Seyedmasoud 01 January 2014 (has links)
The main objective of this research is to explore, investigate and develop the new data analysis techniques along with novel sensing technologies for structural health monitoring applications. The study has three main parts. First, a systematic comparative evaluation of some of the most common and promising methods is carried out along with a combined method proposed in this study for mitigating drawbacks of some of the techniques. Secondly, nonparametric methods are evaluated on a real life movable bridge. Finally, a hybrid approach for non-parametric and parametric method is proposed and demonstrated for more in depth understanding of the structural performance. In view of that, it is shown in the literature that four efficient non-parametric algorithms including, Cross Correlation Analysis (CCA), Robust Regression Analysis (RRA), Moving Cross Correlation Analysis (MCCA) and Moving Principal Component Analysis (MPCA) have shown promise with respect to the conducted numerical studies. As a result, these methods are selected for further systematic and comparative evaluation using experimental data. A comprehensive experimental test is designed utilizing Fiber Bragg Grating (FBG) sensors simulating some of the most critical and common damage scenarios on a unique experimental structure in the laboratory. Subsequently the SHM data, that is generated and collected under different damage scenarios, are employed for comparative study of the selected techniques based on critical criteria such as detectability, time to detection, effect of noise, computational time and size of the window. The observations indicate that while MPCA has the best detectability, it does not perform very reliable results in terms of time to detection. As a result, a machine-learning based algorithm is explored that not only reduces the associated delay with MPCA but further iii improves the detectability performance. Accordingly, the MPCA and MCCA are combined to introduce an improved algorithm named MPCA-CCA. The new algorithm is evaluated through both experimental and real-life studies. It is realized that while the methods identified above have failed to detect the simulated damage on a movable bridge, the MPCA-CCA algorithm successfully identified the induced damage. An investigative study for automated data processing method is developed using nonparametric data analysis methods for real-time condition maintenance monitoring of critical mechanical components of a movable bridge. A maintenance condition index is defined for identifying and tracking the critical maintenance issues. The efficiency of the maintenance condition index is then investigated and demonstrated against some of the corresponding maintenance problems that have been visually and independently identified for the bridge. Finally, a hybrid data interpretation framework is designed taking advantage of the benefits of both parametric and non-parametric approaches and mitigating their shortcomings. The proposed approach can then be employed not only to detect the damage but also to assess the identified abnormal behavior. This approach is also employed for optimized sensor number and locations on the structure.
108

Evaluation of protective polyimide layers on fibre optic sensors for use in demanding chemical environments

Yesilgül, Genç January 2022 (has links)
Fiber optic sensors offer the ability to measure different types of physical quantities in more harsh environments, such as temperature, pressure and deformations. Some of these demanding environments include chemicals that affect the sensitivity of the sensor, and therefore its resili-ence deteriorates. This work focuses on using experimental techniques to find a method that protects the optical fiber in these chemically demand-ing environments, by coating the fiber with a polymer layer which has the task of protecting it in such environments. A challenge that comes with coating the fiber optic sensor with a polymer layer is that the ability to obtain information becomes more difficult as, its sensitivity deterio-rates. In this project, a type of polymer called polyimide will be tested, using different concentrations and number of layers coated on the optical sensor to investigate the extent that these factors affect the sensor´s ability to cope in chemically demanding environments and also how the sensi-tivity is affected. Thus, the coating method used was soap film coating (SFC). A spectrometer was used to examine the sensitivity of the sensor (using total internal reflection (TIR) and surface plasmon resonance (SPR)). The examination of the resistance of the optical fiber was meas-ured by immersing the polymer-coated sensor in a corrosive liquid for various time intervals and then examining its protective ability. The re-sults obtained through this work demonstrate that polyimide as a coating material provides a protective effect by improving the resistance. The sen-sitivity was most affected when the concentration of the polyimide layer increased from 1-layer to 2-layer polyimide at high concentrations. Re-sistance also increased as the concentration increased, however, 1-layer and 2-layer protection did not have a major impact. The results of this project can be used to further test different types of polymers, for example PVDF. Even more tests with the same attitude and conditions should be carried out to ensure the conclusions and results, and to estimate the measurement uncertainties in the work.
109

Fiber Loop Ringdown for Physical and Chemical Sensors and Sensing

Ghimire, Maheshwar 04 May 2018 (has links)
Optical fibers are getting significant considerations in the field of the sensors and sensing beyond its applications in optical communications. Because of several advantages, e.g., low profile of the sensors, immunity to electromagnetic noises, the ability of multiplexing, etc., the use of the fiber optic sensor is increasing in the field of physical, chemical, and biomedical sensing. In this study, we have developed two new fiber optic sensors based on fiber loop ringdown technique (FLRD) and have demonstrated their applications in the field of sensing. In the first part of this study, we report on the development of a high-sensitivity FLRD strain sensor. For the design of the strain sensor, the fiber loop was cut at the middle, and then the two fiber ends from broken fiber loop were cleaved and aligned carefully to couple the light from one end to another end. Any strain during the measurement changes the alignment of the fiber ends, consequently, the ringdown time changes. With this scheme, the FLRD strain sensor has shown the strain detection limit of 65 nanostrain, which is five times better than any FLRD strain sensors reported in the literature. Furthermore, The FLRD strain sensors were successfully embedded into prestressed concrete-beams.The FLRD strain sensor was able to monitor stress on a post-tensioned rod, as well as the load applied on the concrete-beam during the three-point loading test, thus exhibiting immense potential in structural health monitoring. For the chemical sensor, a new scheme of interrogation for a fiber optic surface plasmon sensor was developed with the use of the FLRD technique. A gold nanolayer was deposited on an uncladded fiber section, and the fiber section was integrated into the FLRD system as a sensor head. The gold layer facilitates for increased interaction of sample of interest, with the light pulse confined in the fiber waveguide. Moreover, with the affinity of the gold with specific biomolecules, the sensor has the potential for applications in biochemical sensing. In the experiment, the SP-FLRD sensor was used for refractive index sensing, and index detection limit of 4.6×10-5 RIU was achieved.
110

GREY-MODEL BASED ICE PREDICTION SENSOR SYSTEM ON WIND TURBINE SYSTEM

Feng, Chao 30 January 2012 (has links)
No description available.

Page generated in 0.1129 seconds