• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 86
  • 26
  • 18
  • 11
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 232
  • 60
  • 45
  • 44
  • 36
  • 30
  • 24
  • 24
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Development of Random Hole Optical Fiber and Crucible Technique Optical Fibers

Kominsky, Daniel 28 September 2005 (has links)
This dissertation reports the development of two new categories of optical fibers. These are the Random Hole Optical Fiber (RHOF) and the Crucible Technique Hybrid Fiber (CTF). The RHOF is a new class of microstructure fiber which possesses air holes which vary in diameter and location along the length of the fiber. Unlike all prior microstructure fibers, these RHOF do not have continuous air holes which extend throughout the fiber. The CTF is a method for incorporating glasses with vastly differing thermal properties into a single optical fiber. Each of these two classes of fiber brings a new set of optical characteristics into being. The RHOF exhibit many of the same guidance properties as the previously researched microstructure fibers, such as reduced mode counts in a large area core. CTF fibers show great promise for integrating core materials with extremely high levels of nonlinearity or gain. The initial goal of this work was to combine the two techniques to form a fiber with exceedingly high efficiency of nonlinear interactions. Numerous methods have been endeavored in the attempt to achieve the fabrication of the RHOF. Some of the methods include the use of sol-gel glass, microbubbles, various silica powders, and silica powders with the incorporation of gas producing agents. Through careful balancing of the competing forces of surface tension and internal pressure it has been possible to produce an optical fiber which guides light successfully. The optical loss of these fibers depends strongly on the geometrical arrangement of the air holes. Fibers with a higher number of smaller holes possess a markedly lower attenuation. RHOF also possess, to at least some degree the reduced mode number which has been extensively reported in the past for ordered hole fibers. Remarkably, the RHOF are also inherently pressure sensitive. When force is applied to an RHOF either isotropically, or on an axis perpendicular to the length of the fiber, a wavelength dependent loss is observed. This loss does not come with a corresponding response to temperature, rendering the RHOF highly anomalous in the area of fiber optic sensing techniques. Furthermore an ordered hole fiber was also tested to determine that this was not merely a hitherto undisclosed property of all microstructure fibers. Crucible technique fibers have also been fabricated by constructing an extremely thick walled silica tube, which is sealed at the bottom. A piece of the glass that is desired for the core (such as Lead Indium Phosphate) is inserted into the hole which is in the center of the tube. The preform is then drawn on an fiber draw tower, resulting in a fiber with a core consisting of a material which has a coefficient of thermal expansion (CTE) or a melting temperature (Tm) which is not commonly compatible with those of silica. / Ph. D.
62

Self-Calibrated Interferometric/Intensity-Based Fiber Optic Pressure Sensors

Xiao, Hai 04 September 2000 (has links)
To fulfill the objective of providing robust and reliable fiber optic pressure sensors capable of operating in harsh environments, this dissertation presents the detailed research work on the design, modeling, implementation, analysis, and performance evaluation of the novel fiber optic self-calibrated interferometric/intensity-based (SCIIB) pressure sensor system. By self-referencing its two channels outputs, for the first time to our knowledge, the developed SCIIB technology can fully compensate for the fluctuation of source power and the variations of fiber losses. Based on the SCIIB principle, both multimode and single-mode fiber-based SCIIB sensor systems were designed and successfully implemented. To achieve all the potential advantages of the SCIIB technology, the novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance fiber optic Fabry-Perot sensor probes with excellent mechanical strength and temperature stability. Mathematical models of the sensor in response to the pressure and temperature are studied to provide a guideline for optimal design of the sensor probe. The solid and detailed noise analysis is also presented to provide a better understanding of the performance limitation of the SCIIB system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. The major test results give us the confidence to believe that the development of the fiber optic SCIIB pressure sensor system provides a reliable pressure measurement tool capable of operating in high pressure, high temperature harsh environments. / Ph. D.
63

Analysis and Applications of Microstructure and Holey Optical Fibers

Kim, Jeong I. 27 October 2003 (has links)
Microstructure and photonic crystal fibers with periodic as well as random refractive-index distributions are investigated. Two cases corresponding to fibers with one-dimensional (1D) radial index distributions and two-dimensional (2D) transverse index distributions are considered. For 1D geometries with an arbitrary number of cladding layers, exact analytical solutions of guided modes are obtained using a matrix approach. In this part, for random index distributions, the average transmission properties are calculated and the influence of glass/air ratio on these properties is assessed. Important transmission properties of the fundamental mode, including normalized propagation constant, chromatic dispersion, field distributions, and effective area, are evaluated. For 2D geometries, the numerical techniques, FDTD (Finite-Difference Time-Domain) method and FDM (Finite Difference Method), are utilized. First, structures with periodic index distributions are examined. The investigation is then extended to microstructure optical fibers with random index distributions. Design of 2D microstructure fibers with random air-hole distributions is undertaken with the aim of achieving single-mode guiding property and small effective area. The former is a unique feature of the holey fiber with periodic air-hole arrangement and the latter is a suitable property for nonlinear fiber devices. Measurements of holey fibers with random air-hole distributions constitute an important experimental task of this research. Using a section of a holey fiber fabricated in the draw tower facility at Virginia Tech, measurements of transmission spectra and fiber attenuation are performed. Also, test results for far-field pattern measurements are presented. Another objective of this dissertation is to explore new applications for holey fibers with random or periodic hole distributions. In the course of measuring the holey fibers, it was noticed that robust temperature-insensitive pressure sensors can be made with these fibers. This offers an opportunity for new low-cost and reliable pressure fiber-optic sensors. Incorporating gratings into holey fibers in conjunction with the possibility of dynamic tuning offers desirable characteristics with potential applications in communications and sensing. Injecting gases or liquids in holey fibers with gratings changes their transmission characteristics. These changes may be exploited in designing tunable optical filters for communication applications or making gas/liquid sensor devices. / Ph. D.
64

Quasi-Distributed Intrinsic Fabry-Perot Interferometric Fiber Sensor for Temperature and Strain Sensing

Huang, Zhengyu 23 March 2006 (has links)
The motivation of this research is to meet the growing demand for the measurand high-resolution, high-spatial resolution, attenuation insensitive and low-cost quasi-distributed temperature and strain sensors that can reliably work under harsh environment or in extended structures. There are two main drives for distributed fiber sensor research. The first is to lower cost-per-sensor so that the fiber sensors may become price-competitive against electrical sensors in order to gain widespread acceptance. The second is to obtain spatial distribution of the measurand. This dissertation presents detailed research on the design, modeling, analysis, system implementation, sensor fabrication, performance evaluation, sensor field test and noise analysis of a quasi-distributed intrinsic Fabry-Perot interferometric (IFPI) fiber sensor suitable for temperature and strain measurement. For the first time to our knowledge, an IFPI sensor using a different type of fiber spliced in between two single-mode fibers is proposed and tested. The proposed sensor has high measurement accuracy, excellent repeatability, a large working range and a low insertion-loss. It requests no annealing after the sensor is made, and the sensor is calibration-free. The sensor fabrication is low-cost and has a high yield rate. The goal for this research is to bring this sensor to a level where it will become commercially viable for quasi-distributed sensing applications. / Ph. D.
65

Theoretical and Experimental Study of Low-Finesse Extrinsic Fabry-Perot Interferometric Fiber Optic Sensors

Han, Ming 06 July 2006 (has links)
In this report, detailed and systematic theoretical and experimental study of low-finesse extrinsic Fabry-Perot interferometric (EFPI) fiber optic sensors together with their signal processing methods for white-light systems are presented. The work aims to provide a better understanding of the operational principle of EFPI fiber optic sensors, and is useful and important in the design, optimization, fabrication and application of single mode fiber(SMF) EFPI (SMF-EFPI) and multimode fiber (MMF) EFPI (MMF-EFPI) sensor systems. The cases for SMF-EFPI and MMF-EFPI sensors are separately considered. In the analysis of SMF-EFPI sensors, the light transmitted in the fiber is approximated by a Gaussian beam and the obtained spectral transfer function of the sensors includes an extra phase shift due to the light coupling in the fiber end-face. This extra phase shift has not been addressed by previous researchers and is of great importance for high accuracy and high resolution signal processing of white-light SMF-EFPI systems. Fringe visibility degradation due to gap-length increase and sensor imperfections is studied. The results indicate that the fringe visibility of a SMF-EFPI sensor is relatively insensitive to the gap-length change and sensor imperfections. Based on the spectral fringe pattern predicated by the theory of SMF-EFPI sensors, a novel curve fitting signal processing method (Type 1 curve-fitting method) is presented for white-light SMF-EFPI sensor systems. Other spectral domain signal processing methods including the wavelength-tracking, the Type 2-3 curve fitting, Fourier transform, and two-point interrogation methods are reviewed and systematically analyzed. Experiments were carried out to compare the performances of these signal processing methods. The results have shown that the Type 1 curve fitting method achieves high accuracy, high resolution, large dynamic range, and the capability of absolute measurement at the same time, while others either have less resolution, or are not capable of absolute measurement. Very different from SMF-EFPI sensors, MMF-EFPI sensors with high fringe visibility usually are more difficult to obtain in practice because the fringe visibility of a MMF-EFPI sensor is much more sensitive to gap-length change and sensor head imperfections. %Previously, only geometric-optics are available to analyze MMF-EFPI sensors which approximate the light in MMF as rays propagating in different directions. Geometric-optics theory has fundenmental limitations because it is approximate and only valid for limited conditions. Moreover, geometric-optics theory is not capable of poviding the exact fringe pattern which is important in the signal processing of white light MMF-EFPI sensor systems. In this report, Previous mathematical models for MMF-EFPI sensors are all based on geometric optics; therefore their applications have many limitations. In this report, a modal theory is developed that can be used in any situations and is more accurate. The mathematical description of the spectral fringes of MMF-EFPI sensors is obtained by the modal theory. Effect on the fringe visibility of system parameters, including the sensor head structure, the fiber parameters, and the mode power distribution in the MMF of the MMF-EFPI sensors, is analyzed. Experiments were carried out to validate the theory. Fundamental mechanism that causes the degradation of the fringe visibility in MMF-EFPI sensors are revealed. It is shown that, in some situations at which the fringe visibility is important and difficult to achieve, a simple method of launching the light into the MMF-EFPI sensor system from the output of a SMF could be used to improve the fringe visibility and to ease the fabrication difficulties of MMF-EFPI sensors. Signal processing methods that are well-understood in white-light SMF-EFPI sensor systems may exhibit new aspects when they are applied to white-light MMF-EFPI sensor systems. This report reveals that the variations of mode power distribution (MPD) in the MMF could cause phase variations of the spectral fringes from a MMF-EFPI sensor and introduce measurement errors for a signal processing method in which the phase information is used. This MPD effect on the wavelength-tracking method in white-light MMF-EFPI sensors is theoretically analyzed. The fringe phases changes caused by MPD variations were experimentally observed and thus the MFD effect is validated. / Ph. D.
66

Novel Optical Sensors for High Temperature Measurement in Harsh Environments

Zhang, Yibing 29 July 2003 (has links)
Accurate measurement of temperature is essential for the safe and efficient operation and control of a vast range of industrial processes. Many of these processes involve harsh environments, such as high temperature, high pressure, chemical corrosion, toxicity, strong electromagnetic interference, and high-energy radiation exposure. These extreme physical conditions often prevent conventional temperature sensors from being used or make them difficult to use. Novel sensor systems should not only provide accurate and reliable temperature measurements, but also survive the harsh environments through proper fabrication material selections and mechanical structure designs. This dissertation presents detailed research work on the design, modeling, implementation, analysis, and performance evaluation of novel optical high temperature sensors suitable for harsh environment applications. For the first time to our knowledge, an optical temperature sensor based on the broadband polarimetric differential interferometric (BPDI) technology is proposed and tested using single crystal sapphire material. With a simple mechanically structured sensing probe, in conjunction with an optical spectrum-coded interferometric signal processing technique, the proposed single crystal sapphire optical sensor can measure high temperature up to 1600 oC in the harsh environments with high accuracy, corrosion resistance, and long-term measurement stability. Based on the successfully demonstrated sensor prototype in the laboratory, we are confident of the next research step on sensor optimization and scale-up for full field implementations. The goal for this research has been to bring this temperature sensor to a level where it will become commercially viable for harsh environment applications associated with industries. / Ph. D.
67

Analysis, Design and Performance Evaluation of Optical Fiber Spectrum-Sliced WDM Systems

Arya, Vivek 10 July 1997 (has links)
This dissertation investigates the design and performance issues of a recently demonstrated technique, termed as spectrum-slicing, for implementing wavelength-division-multiplexing (WDM) in optical fiber systems. Conventional WDM systems employ laser diodes operating at discrete wavelengths as carriers for the different data channels that are to be multiplexed. Spectrum-slicing provides an attractive low-cost alternative to the use of multiple coherent lasers for such WDM applications by utilizing spectral slices of a broadband noise source for the different data channels. The principal broadband noise source considered is the amplified spontaneous emission (ASE) noise from an optical amplifier. Each slice of the spectrum is actually a burst of noise that is modulated individually for a high capacity WDM system. The stochastic nature of the broadband source gives rise to excess intensity noise which results in a power penalty at the receiver. One way to minimize this penalty, as proposed and analyzed for the first time in this work, is to use an optical preamplifier receiver. It is shown that when an optical preamplifier receiver is used, there exists an optimum filter bandwidth which optimizes the detection sensitivity (minimizes the average number of photons/bit) for a given error probability. Moreover the evaluated detection sensitivity represents an order of magnitude ( > 10 dB) improvement over conventional PIN receiver-based detection techniques for such spectrum-sliced communication systems. The optimum is a consequence of signal energy fluctuations dominating at low values of the signal time bandwidth product (m), and the preamplifier ASE noise dominating at high values of m. Operation at the optimum bandwidth renders the channel error probability to be a strong function of the optical bandwidth, thus providing motivation for the use of forward error correction coding (FEC). System capacity (for BER = ) is shown to be 23 Gb/s without coding, and 75 Gb/s with a (255,239) Reed Solomon code. The effect of non-rectangular spectra on receiver sensitivity is investigated for both OOK and FSK transmission, assuming the system (de)multiplexer filters to be N'th order Butterworth bandpass. Although narrower filters are recommended for improving power budget, it is shown that system penalty due to filter shape may be kept < 1 dB by employing filters with N > 2. Moreover spectrum-sliced FSK systems using optical preamplifier receivers are shown, for the first time, to perform better in a peak optical power limited environment. Performance-optimized spectrum-sliced WDM systems have potential use in both local loop and long-distance fiber communication systems which require low-cost WDM equipment for high data rate applications. / Ph. D.
68

Design, Analysis, and Initial Testing of a Fiber-Optic Shear Gage for 3D, High-Temperature Flows

Orr, Matthew William 10 February 2004 (has links)
This investigation concerns the design, analysis, and initial testing of a new, two-component wall shear gage for 3D, high-temperature flows. This gage is a direct-measuring, non-nulling design with a round head surrounded by a small gap. Two flexure wheels are used to allow small motions of the floating head. Fiber-optic displacement sensors measure how far the polished faces of counterweights on the wheels move in relation to a fixed housing as the primary measurement system. No viscous damping was required. The gage has both fiber-optic instrumentation and strain gages mounted on the flexures for validation of the newer fiber optics. The sensor is constructed of Haynes 230, a high-temperature nickel alloy. The gage housing is made of 316 stainless steel. All components of the gage in pure fiber-optic form can survive to a temperature of 1073 K. The bonding methods of the backup strain gages limit their maximum temperature to 473 K. The dynamic range of the gage is from 0-500 Pa (0-10g) and higher shears can be measured by changing the floating head size. Extensive use of finite element modeling was critical to the design and analysis of the gage. Static structural, modal, and thermal analyses were performed on the flexures using the ANSYS finite element package. Static finite element analysis predicted the response of the flexures to a given load, and static calibrations using a direct force method confirmed these results. Finite element modal analysis results were within 16.4% for the first mode and within 30% for the second mode when compared with the experimentally determined modes. Vibration characteristics of the gage were determined from experimental free vibration data after the gage was subjected to an impulse. Uncertainties in the finished geometry make this level of error acceptable. A transient thermal analysis examined the effects of a very high heat flux on the exposed head of the gage. The 100,000 W/m2 heat flux used in this analysis is typical of a value in a scramjet engine. The gage can survive for 10 minutes and operate for 3 minutes before a 10% loss in flexure stiffness occurs under these conditions. Repeated cold-flow wind tunnel tests at Mach 2.4 with a stagnation pressure from 3.7-8.2 atm (55-120 psia) and ambient stagnation temperature (Re=6.6x107/m) and Mach 4.0 with a stagnation pressure from 10.2-12.2 atm (150-180 psia) and ambient stagnation temperature (Re=7.4x107/m) were performed in the Virginia Tech Supersonic Wind Tunnel. Some of these tests had the gage intentionally misaligned by 25o to create a virtual 3D flow in this nominally 2D facility. Experimental results gave excellent agreement with semi-empirical prediction methods for both the aligned and 25o experiments. This fiber-optic skin friction gage operated successfully without viscous damping. These tests in the supersonic wind tunnel validated this wall shear gage design concept. / Ph. D.
69

A dual wavelength fiber optic strain sensing system

Malik, Asif 03 March 2009 (has links)
The extrinsic Fabry-Perot interferometer (EFPI) has been extensively used as a strain sensor in various applications. However, like other interferometric sensors, the EFPI suffers from ambiguity in detecting directional changes of the applied perturbation, when the operating point is at a maxima or a minima on the transfer function curve. Different methods, or sensor configurations have been proposed to solve this problem. This thesis investigates the use of dual wavelength interferometry to overcome this limitation. Possible systems configurations based on dual wavelength interferometry were considered, and the comprehensive design and implementation of a dual laser time division multiplexed (TOM) system based is presented. The system operates by alternately pulse modulating two laser diodes, which are closely spaced in center wavelength. Although the strain rate measurement capability of the system is dependent primarily on the speed of its hardware and the accuracy of its software, it is shown that it can be considerably enhanced by employing digital signal processing techniques. / Master of Science
70

The feasibility study of implementing a fiber optic local area network in software metrics laboratory in Ingersoll 158

Ee, Chai Chuan 03 1900 (has links)
Approved for public release, distribution is unlimited / Optical fiber has been the preferred cabling technology for certain building and campus network LAN backbones. Until recently, however, the use of fiber as a cabling medium to the desktop has been confined to special environments that require the unique properties of optical fiber such as noise immunity, security, distance, high bandwidth demands (CAD/CAM, video conferencing), and immunity to electrical interference. However, choosing to use optical fiber in a network over other cabling options may present significant advantages in its inherent ability to handle data at higher speeds. Decreasing costs of optical fiber components compared to the increasing electronic costs of carrying Gigabit Ethernet over Cat 5 or Cat 5E UTP copper cabling has also accelerated the migration to optical fiber LAN. The thesis conducts a feasibility study of implementing a Fiber Optic Local Area Network in Software Metrics Laboratory in Ingersoll 158. / Major, Republic of Singapore Air Force

Page generated in 0.0914 seconds