Spelling suggestions: "subject:"fiber optar communication""
11 |
Design, Fabrication and Analysis of InP-InGaAsP Traveling-Wave Electro-Absorption ModulatorsIrmscher, Stefan January 2003 (has links)
External modulators will become key components in fiberoptical communica- tion systems operating at 40Gbit/s andhigher bitrates. Semiconductor electro- absorption (EA)modulators are promising candidates because of their high-speed potential, and their process compatibility with thecorresponding semi- conductor laser light sources. Thetraveling-wave (TW) electrode concept for electro-opticmodulators has been used for a long time in order to resolvethe con°ict between high modulation depth and highmodulation bandwidth. Re- cently, it has been adopted for EAmodulators as well. This thesis presents the work carried out on design,fabrication and analysis of traveling-wave EA modulators(TWEAM) based on InP-InGaAsP. The lengths of TWEAM arecomparable to the lengths of their lumped counterparts. Theexperimental data of this work were analyzed in order show thatthe traveling- wave concept results in better performance evenfor short EA modulators. One key issue is the impedancematching. The low intrinsic characteristic modulator impedancehas to be matched with a corresponding load. In this case, theTW con figuration leads to a much higher bandwidth than for alumped EA modulator with the same length and the same connectedload. An InP process was developed allowing the fabrication ofTWEAM with integrated termination resistors. Experimentalmicrowave properties were ob- tained for different TWEAMgeometries. It is reported on long TWEAM that showstate-of-the-art bandwidth. A 450&#956m long TWEAM reached43GHz, and 67GHz (beyond characterization limit) were indicatedfor a 250&#956m device. The experimental results onmicrowave properties were compared to full-wave, and circuitmodel simulations. The analysis reveals an impedance bandwidthtrade- off for the cross sectional electrode configuration. Results of a new high-impedance design in form of asegmented TWEAM are presented. The devices were processedwithin the frame of this work and record bandwidth performanceis reported. At 50&#937 impedance a bandwidth in the90GHz region was indicated.
|
12 |
Design, Fabrication and Analysis of InP-InGaAsP Traveling-Wave Electro-Absorption ModulatorsIrmscher, Stefan January 2003 (has links)
<p>External modulators will become key components in fiberoptical communica- tion systems operating at 40Gbit/s andhigher bitrates. Semiconductor electro- absorption (EA)modulators are promising candidates because of their high-speed potential, and their process compatibility with thecorresponding semi- conductor laser light sources. Thetraveling-wave (TW) electrode concept for electro-opticmodulators has been used for a long time in order to resolvethe con°ict between high modulation depth and highmodulation bandwidth. Re- cently, it has been adopted for EAmodulators as well.</p><p>This thesis presents the work carried out on design,fabrication and analysis of traveling-wave EA modulators(TWEAM) based on InP-InGaAsP. The lengths of TWEAM arecomparable to the lengths of their lumped counterparts. Theexperimental data of this work were analyzed in order show thatthe traveling- wave concept results in better performance evenfor short EA modulators. One key issue is the impedancematching. The low intrinsic characteristic modulator impedancehas to be matched with a corresponding load. In this case, theTW con figuration leads to a much higher bandwidth than for alumped EA modulator with the same length and the same connectedload.</p><p>An InP process was developed allowing the fabrication ofTWEAM with integrated termination resistors. Experimentalmicrowave properties were ob- tained for different TWEAMgeometries. It is reported on long TWEAM that showstate-of-the-art bandwidth. A 450μm long TWEAM reached43GHz, and 67GHz (beyond characterization limit) were indicatedfor a 250μm device. The experimental results onmicrowave properties were compared to full-wave, and circuitmodel simulations. The analysis reveals an impedance bandwidthtrade- off for the cross sectional electrode configuration.</p><p>Results of a new high-impedance design in form of asegmented TWEAM are presented. The devices were processedwithin the frame of this work and record bandwidth performanceis reported. At 50Ω impedance a bandwidth in the90GHz region was indicated.</p>
|
13 |
Optical Fibers for Space-Division Multiplexed Transmission and NetworkingXia, Cen 01 January 2015 (has links)
Single-mode fiber transmission can no longer satisfy exponentially growing capacity demand. Space-division multiplexing (SDM) appears to be the only way able to dramatically improve the transmission capacity, for which, novel optical fiber is one of the key technologies. Such fibers must possess the following characteristics: 1) high mode density per cross-sectional area and 2) low crosstalk or low modal differential group delay (DMGD) to reduce complexity of digital signal processing. In this dissertation, we explore the design and characterization of three kinds of fibers for SDM: few-mode fiber (FMF), few-mode multi-core fiber (FM-MCF) and coupled multi-core fiber (CMCF) as well as their applications in transmission and networking. For the ultra-high density need of SDM, we have proposed the FMMCF. It combines advantages of both the FMF and MCF. The challenge is the inter-core crosstalk of the high-order modes. By applying a hole-assisted structure and careful fiber design, the LP11 crosstalk has been suppressed down to -40dB per km. This allows separate transmission on LP01 and LP11 modes without penalty. In fact, a robust SDM transmission up to 200Tb/s has been achieved using this fiber. To overcome distributed modal crosstalk in conjunction with DMGD, supermodes in CMCFs have been proposed. The properties of supermodes were investigated using the coupled-mode theory. The immediate benefits include high mode density and large effective area. In supermode structures, core-to-core coupling is exploited to reduce modal crosstalk or minimize DMGD. In addition, higher-order supermodes have been discovered in CMCFs with few-mode cores. We show that higher-order supermodes in different waveguide array configurations can be strongly affected by angle-dependent couplings, leading to different modal fields. Analytical solutions are provided for linear, rectangular and ring arrays. Higher-order modes have been observed for the first time using S2 imaging method. Finally, we introduce FMF to gigabit-capable passive optical networks (GPON). By replacing the conventional splitter with a photonic lantern, upstream combining loss can be eliminated. Low crosstalk has been achieved by a customized mode-selective photonic lantern carefully coupled to the FMF. We have demonstrated the first few-mode GPON system with error-free performance over 20-km 3-mode transmission using a commercial GPON system carrying live Ethernet traffic. We then scale the 3-mode GPON system to 5-mode, which resulted in a 4dB net gain in power budget in comparison with current commercial single-mode GPON systems.
|
14 |
Analysis and Design of Long Haul Fiber-Optic Communication SystemsYang, Dong 08 1900 (has links)
<p> This thesis deals with the limiting factors in the design of a long-haul fiber-optic communication
system, and the techniques used to suppress their resulting impairments. These
limiting factors include both linear and nonlinear effects, such as fiber chromatic dispersion
and the Kerr nonlinearity, and the modulator-induced nonlinearity. </p> <p> In Chapter 3, the conditional probability density function (PDF) of the received elect
rical signal given transmitted bit '1 '/'0' for a coherent fiber-optic transmission system
based on binary phase shift keying (BPSK) is mathematically derived. Both amplified
spontaneous emission (ASE) noise and fiber nonlinearity are taken into account . The
results show that the conditional PDF of given bit '1' or '0' is asymmetric when intrachannel
four-wave mixing (IFWM) is dominant, while it becomes nearly symmetric when
the variance of ASE is much larger than that due to IFWM. The standard deviation of
the received signal is calculated analytically. The system parameters, including optimum
dispersion map and pre-compensation ratio, are optimized by analytically calculating
variance of IFWM. Significant computation efforts can be saved using this approach as
compared to full numerical simulations of the nonlinear Schrodinger equation, without
losing much accuracy. </p> <p> In Chapter 4, an improved 4-f time-lens configuration is proposed. Fourier transform
(FT) and inverse Fourier transform (IFT) can be realized using time lenses such that
there is no need for time reversal at the end. A typical 4-f configuration consists of two
2-f systems and a temporal filter. The first 2-f system consisting of a time lens and two
dispersive elements produces the Fourier transform (FT) of the input signal. The temporal filter modifies the spectrum. The next 2-f system produces the inverse Fourier transform
(IFT). A wavelength division demultiplexer and a higher-order dispersion compensator
based on 4-f configuration are numerical implemented. One of the advantages of the
time-lens-based temporal filtering technique is that the transfer function of the temporal
filter can be dynamically altered by changing the input voltage to the temporal filter
(amplitude/phase modulator) and therefore, this technique could be used for dynamic
switching and multiplexing in optical networks. </p> <p> In chapter 5, a direct-detection optical orthogonal frequency division multiplexing
(DD-0-0FDM) is realized using time lenses. Typically, in OFDM systems, discrete
Fourier transform (DFT) is used at the transmitter and inverse discrete Fourier transform
(IDFT) is used at the receiver. In this chapter, it is proposed to use continuous Fourier
transform (FT) and inverse Fourier transform (IFT) using time lenses that replace DFT
and IDFT in the electrical domain. The third- and higher-order dispersive effects can be
considerably reduced using the proposed DD-0-0FDM scheme. </p> <p> In Chapter 6, a coherent optical orthogonal frequency division multiplexing (OFDM)
(C0-0-0FDM) scheme using time lenses is analyzed. The comparison of performance
between the proposed scheme and the conventional optical OFDM scheme using fast
Fourier transform (FFT) and inverse FFT in the electrical domain is made. Both the
Mach-Zehnder modulator (MZM) induced and fiber induced nonlinearities are investigated.
Results show that the time-lens-based C0-0-0FDM performs almost the same as
the FFT-based C0-0-0FDM when the message signal launched to MZM is low so that
MZM operates in the linear region. The nonlinearity of MZM degrades the performance
of FFT-based C0-0-0FDM drastically when the power of message signal becomes sufficiently
large, but only has negligible impact on the time-lens-based C0-0-0FDM. A
periodical driving voltage has been proposed to set up the time lens such that the maximally
required driving voltage level is kept low within the time frame. The advantages
using the time-lens-based C0-0-0FDM are that (i) FT can be done in optical domain
almost instantaneously, whereas the FFT in digital domain is slow and requires significant computational efforts, (ii) optical domain Fourier transform has a large bandwidth
(~THz) and therefore, FT /IFT can be performed at a large symbol rate. </p> <p> In Chapter 7, the digital backward propagation (DBP) has been studied both in
orthogonal frequency-division multiplexing ( OFDM) and single-carrier (SC) fiber-optic
transmission systems. 16 quadrature amplitude modulation (QAM) is used for both
systems with the bit rate of 100 Gbjs. The results show that OFDM and SC with
Nyquist pulses (SC-Nyquist) have a superior performance as compared to SC with raisedcosine
pulses (SC-NRZ) when the DBP is used. The impact of electrical filter bandwidth
and nonlinear phase/amplitude noise has also been investigated. The performance
of perfect-BP-based OFDM/SC initially improves when the electrical filter bandwidth
increases at high signal-to-noise ratio (SNR). The comparison of the effects of nonlinear
phase/amplitude noise among OFDM, SC-Nyquist and SC-NRZ systems is made
and it is shown that SC-NRZ systems significantly suffer from the effects of nonlinear
phase/amplitude noise, which explains the performance advantage of OFDM/SC-Nyquist
over SC-NRZ when the DBP used. </p> / Thesis / Doctor of Philosophy (PhD)
|
15 |
Parameter Extraction for Behaviour Modeling of Single Mode Semiconductor Laser Transmitter in Intensity Modulated Direct Detection Fiber-Optic Communication SystemsHabibullah, Faisal 12 1900 (has links)
Intensity modulation direct detection (IMDD) transmission scheme has been the mainstay in optical communication ever since semiconductor lasers were put to use as the choice transmission sources. With the development of new improved laser types, this method will continue to dominate the third generation light wave networks where bit rates have steadily risen beyond 10Gbps mark. The main attraction of this scheme lies in its simplicity. With EDFA amplifiers providing a cost effective solution to the attenuation problem, long haul network capacity under the scheme has greatly increased. At the design stage of such systems, it is essential to accurately predict the behavior of each system component right from the laser transmitter up to the optical receiver under custom specific operating conditions and laser diodes are one of the key
components for a wide range of light wave communication systems. For this purpose, computer-aided simulation techniques based on behavioral models of laser diodes have been developed and validated for a variety of applications [4-8]. A ‘representative’ behavior model, which closely approximates the device’s actual physical model, is essential to the system designer. Unfortunately, the component vendor or manufacturer may not be able to provide all the information needed to predict such behavior. The only information that can be made available, are certain measured variables over a specified measurement range. The designer therefore, needs a tool to effectively convert this data into a useful model with sufficiently accurate parameters for predicting behavior. As the complexity of the model increases, more detailed knowledge of the laser is required and the computation time for system performance calculation increases. While
sophisticated models provide considerable insight into important characteristics of the
lasers, for system simulation purposes a relatively simple model is often adequate. In this
thesis we will propose a very robust and efficient procedure for estimating the modal
parameters and go on to propose a complete solution to the 0D laser model extending to
such domains as the below threshold dynamics and temperature effects. / Thesis / Master of Engineering (ME)
|
16 |
ANALYSIS AND DESIGN OF NONLINEAR FIBER OPTIC COMMUNICATION SYSTEMSBidaki, Elham January 2020 (has links)
Fiber-optic systems represent the backbone of the communication networks, carrying most of the world’s data traffic. The main bottleneck in today’s fiber-optic communication systems has roots in the inherent nonlinearity of the fiber. Hence, developing new transmission schemes that are compatible with the nonlinear behavior of the optical fiber has become necessary.
To utilize the full transmission capacity of an optical fiber, this thesis investigates two different techniques---compensation-based method and nonlinear Fourier transform (NFT).
For the purpose of suppressing the nonlinear distortion in real time, an optical back propagation (OBP) technique using Raman pumped dispersion compensating fibers (DCF). OBP, as an all-optical signal processing technique, can compensate for both intra- and inter-channel nonlinear impairments in real time in point-to-point systems as well as in optical networks. The proposed inline OBP module consists of an optical phase conjugator (OPC), amplifiers and a Raman pumped DCF. In order to suppress the nonlinear effects of the transmission fiber, the power in the OBP fiber should increase exponentially with distance. This can be approximately achieved by using Raman pumping of the backpropagation fiber. Simulation results show that this technique provides 7.7 dB performance improvement in Q-factor over conventional systems.
The second part of this thesis is dedicated to the NFT as a promising framework to exploit the inherent nonlinearity of optical fiber rather than treating it as an undesirable effect and using perturbation and approximation-based methods to mitigate it.
A novel multistage perturbation technique to realize the NFT as a cascade of linear discrete Fourier transforms is developed. The linear Fourier transform can be easily implemented in the optical domain using a time lens or discrete photonic components, which can be implemented in silicon photonics. The proposed technique provides a promising way to implement NFT in the optical domain, which will fully utilize the potential of NFT for wavelength-division multiplexed fiber-optic systems in the optical domain.
Moreover, a nonlinear frequency-division multiplexed (NFDM) transmission scheme with midpoint OPC is investigated. The proposed mid-OPC NFDM system offers a degree of freedom to have a flexible power normalization factor, P_n to minimize the signal-noise mixing in NFT processing for a specific launch power, resulting in significant system performance improvement up to 5.6 dB in Q-factor over conventional NFDM systems. Another advantage of the proposed scheme is that the mid-OPC NFDM system extends the transmission reach without having to increase the guard interval, which leads to higher spectral efficiency. / Thesis / Doctor of Philosophy (PhD)
|
17 |
Advanced Signal Processing for Fiber-Optic Communication Systems Scaling Capacity Beyond 100 Tb/s / 光ファイバ通信システムの100 Tb/s容量限界の克服へ向けた信号処理技術Shibahara, Kohki 25 September 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20740号 / 情博第654号 / 新制||情||113(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 守倉 正博, 教授 大木 英司, 教授 梅野 健 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
18 |
Wavelength-division-multiplexed Transmission Using Semiconductor Optical Amplifiers And Electronic Impairment CompensationLi, Xiaoxu 01 January 2009 (has links)
Over the last decade, rapid growth of broadband services necessitated research aimed at increasing transmission capacity in fiber-optic communication systems. Wavelength division multiplexing (WDM) technology has been widely used in fiber-optic systems to fully utilize fiber transmission bandwidth. Among optical amplifiers for WDM transmission, semiconductor optical amplifier (SOA) is a promising candidate, thanks to its broad bandwidth, compact size, and low cost. In transmission systems using SOAs, due to their large noise figures, high signal launching powers are required to ensure reasonable optical signal-to-noise ratio of the received signals. Hence the SOAs are operated in the saturation region and the signals will suffer from SOA impairments including self-gain modulation, self-phase modulation, and inter channel crosstalk effects such as cross-gain modulation, cross-phase modulation, and four-wave mixing in WDM. One possibility to circumvent these nonlinear impairments is to use constant-intensity modulation format in the 1310 nm window where dispersion is also negligible. In this dissertation, differential phase-shift keying (DPSK) WDM transmission in the 1310 nm window using SOAs was first considered to increase the capacity of existing telecommunication network. A WDM transmission of 4 x 10 Gbit/s DPSK signals over 540 km standard single mode fiber (SSMF) using cascaded SOAs was demonstrated in a recirculating loop. In order to increase the transmission reach of such WDM systems, those SOA impairments must be compensated. To do so, an accurate model for quantum-dot (QD) SOA must be established. In this dissertation, the QD-SOA was modeled with the assumption of overall charge neutrality. Static gain was calculated. Optical modulation response and nonlinear phase noise were studied semi-analytically based on small-signal analysis. The quantitative studies show that an ultrafast gain recovery time of ~0.1 ps can be achieved when QD-SOAs are under high current injection, which leads to high saturation output power. However more nonlinear phase noise is induced when the QD-SOAs are used in the transmission systems operating at 10 Gbit/s or 40 Gbit/s. Electronic post-compensation for SOA impairments using coherent detection and digital signal processing (DSP) was investigated next in this dissertation. An on-off keying transmission over 100 km SSMF using three SOAs at 1.3 [micrometer] were demonstrated experimentally with direct detection and SOA impairment compensation. The data pattern effect of the signal was compensated effectively. Both optimum launching power and Q-factor were improved by 8 dB. For advanced modulation formats involving phase modulation or in transmission windows with large dispersion, coherent detection must be used and fiber impairments in WDM systems need to be compensated as well. The proposed fiber impairment compensation is based on digital backward propagation. The corresponding DSP implementation was described and the required calculations as well as system latency were derived. Finally joint SOA and fiber impairment compensations were experimentally demonstrated for an amplitude-phase-shift keying transmission.
|
19 |
ANALYSIS AND MITIGATION OF THE NONLINEAR IMPAIRMENTS IN FIBER-OPTIC COMMUNICATION SYSTEMSNADERI, SHAHI SINA 10 1900 (has links)
<p>Fiber-optic communication systems have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Thousands of kilometers of optical fiber are used by telecommunications companies to transmit telephone signals, Internet communication, and cable television signals throughout the world. So, working in this area has always been interesting. This thesis analyzes the nonlinearity of fiber-optic systems and proposes a system to mitigate fiber nonlinear e®ects. The topics of this thesis can be categorized into two parts. In the first part of thesis (Chapters 2, 3, and 4), analytical models are developed for fiber-optic nonlinear effects. It is important to have an accurate analytical model so that the impact of a specific system/signal parameter on the performance can be assessed quickly without doing time-consuming Monte-Carlo simulations. In the second part (Chapters 5, and 6), a multi-core/fiber architecture is proposed to reduce the nonlinear effects.</p> <p>In Chapter 2, intrachannel nonlinear impairments are studied and an analytical model for the calculation of power spectral density (PSD) and variance of the non- linear distortion is obtained based on quadrature phase-shift keying (QPSK) signal. For QPSK signals, intrachannel four-wave mixing (IFWM) is the only stochastic non- linear distortion. To develop the analytical model, a first order perturbation theory is used. For a Gaussian pulse shape, a closed form formula is obtained for the PSD of IFWM. For non-Gaussian pulses, it is not possible to find the PSD analytically. However, using stationary phase approximation approach, convolutions become multiplications and a simple analytical expression for the PSD of the nonlinear distortion can be found. The total PSD is obtained by adding the PSD of amplified spontaneous emission (ASE) PSD to that of the nonlinear distortion. Using the total PSD, bit error ratio (BER) can be obtained analytically for a QPSK system. The analytically estimated BER is found to be in good agreement with numerical simulations. Significant computational effort can be saved using the analytical model as compared to numerical simulations, without sacrificing much accuracy.</p> <p>In Chapter 3, the same approach as that in Chapter 2 is used to find an analytical expression for the PSD of the intrachannel nonlinear distortion of a fiber-optic system based on quadrature amplitude modulation (QAM) signal. Unlike the QPSK signal, intrachannel cross-phase modulation (IXPM) is a stochastic process for the QAM signal which leads to the increase of the nonlinear distortion variance. In this chapter, analytical expressions for the PSDs of self-phase modulation (SPM), IXPM, IFWM, and their correlations are obtained for the QAM signal. Simulation results show good agreement between the analytical model and numerical simulation.</p> <p>In Chapter 4, inter-channel nonlinear impairment is studied. This time, a first order perturbation technique is used to develop an analytical model for SPM and cross-phase modulation (XPM) distortions in a wavelength division multiplexing (WDM) system based on QAM. In this case, SPM distortion is deterministic and does not contribute to the nonlinear noise variance. On the other hand, XPM is stochastic and contributes to the noise variance. In this chapter, effects of input launch power, fiber dispersion, system reach, and channel spacing on the nonlinear noise variance are investigated as well.</p> <p>In Chapter 5, a single-channel multi-core/fiber architecture is proposed to reduce intrachannel fiber nonlinear effects. Based on the analytical model obtained in the first part of thesis, the nonlinear distortion variance scales as P<sup>3</sup>, where P is the fiber input launch power, which suggests that decreasing the fiber input power can reduce the nonlinear distortion significantly. In this system, the input power is divided between multiple cores/fibers by a power splitter at the input of each span and a power combiner adds the output fields of multiple cores/fibers so that one amplifier can be used for each span. In this case, each core/fiber receives less power and hence adds less nonlinear distortion to the signal. In a practical system, individual fiber parameters are not identical; so the optical pulses propagating in the fibers undergo different amounts of phase shifts and timing delays due to the fluctuations of fibers' propagation constants and fibers' inverse group speeds. Optical and electrical equalizers are proposed to compensate for these inter-core/fiber dispersions. In the case of an optical equalizer, adaptive time shifters and phase shifters are adjusted such that the maximum power is obtained at the output of power combiner. Our numerical simulation results show that for unrepeatered systems, the performance (Q factor) is improved by 6.2 dB using 8-core/fiber configuration as compared to single- core fiber system. In addition, for multi-span system, the transmission reach at BER of 2.1*10<sup>-3</sup> is quadrupled in 8-core/fiber configuration.</p> <p>In Chapter 6, a multi-channel multi-core/fiber architecture is proposed to reduce the inter-channel nonlinear distortions. In this architecture, different channels of a WDM system are interleaved between multiple cores/fibers which increases the channel spacing in each core/fiber. Higher channel spacing decreases the inter-channel nonlinear impairments in each core/fiber which leads to system performance improvement. At the end of each span, a multiplexer adds the channels from different cores/fibers so that one amplifier can be used for all of the channels. Unlike the single-channel multi-core/fiber system, the WDM multi-core/fiber system does not require equalizers since different cores/fibers carry channels with different frequencies. Simulation results show that for a 39-span system, the 4-core/fiber system with negligible crosstalk outperforms the single-core system by 2.2 dBQ<sub>20</sub>. The impact of crosstalk between cores of a multi-core fiber (MCF) on the system performance is studied. The simulation results show that the performance of the multi-core WDM system is less sensitive to the crosstalk effect compared to conventional multi-core systems since the propagating channels in the cores are not correlated in frequency domain.</p> / Doctor of Philosophy (PhD)
|
20 |
Field Measurement and Analysis of Next-Generation Optical Access Network with Optical Amplifiers / 光アンプを適用した次世代光アクセスネットワークのフィールド測定及び解析Tsutsumi, Takuya 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21216号 / 情博第669号 / 新制||情||115(附属図書館) / 京都大学大学院情報学研究科通信情報システム専攻 / (主査)教授 守倉 正博, 教授 大木 英司, 教授 梅野 健 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
Page generated in 0.0982 seconds