• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriedades e generalizações dos números de Fibonacci

Almeida, Edjane Gomes dos Santos 29 August 2014 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-30T12:34:27Z No. of bitstreams: 1 arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5) / Approved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-30T12:38:24Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5) / Made available in DSpace on 2015-11-30T12:38:24Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 766531 bytes, checksum: ad20186d0268a15265279ab809f9fd2f (MD5) Previous issue date: 2014-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work is about research done Fibonacci's Numbers. Initially it presents a brief account of the history of Leonardo Fibonacci, from his most famous work,The Liber Abaci, to the relationship with other elds of Mathematics. Then we will introduce some properties of Fibonacci's Numbers, Binet's Form, Lucas' Numbers and the relationship with Fibonacci's Sequence and an important property observed by Fermat. Within relationships with other areas of Mathematics, we show the relationship Matrices, Trigonometry and Geometry. Also presents the Golden Ellipse and the Golden Hyperbola. We conclude with Tribonacci's Numbers and some properties that govern these numbers. Made some generalizations about Matrices and Polynomials Tribonacci. / Este trabalho tem como objetivo o estudo dos Números de Fibonacci. Apresenta-se inicialmente um breve relato sobre a história de Leonardo Fibonacci, desde sua obra mais famosa, O Liber Abaci, até a relação com outros campos da Matemática. Em seguida, apresenta-se algumas propriedades dos Números de Fibonacci, a Fórmula de Binet, os Números de Lucas e a relação com a Sequência de Fibonacci e uma importante propriedade observada por Fermat. Dentro das relações com outras áreas da Matemática, destacamos a relação com as Matrizes, com a Trigonometria, com a Geometria. Apresenta-se também a Elipse e a Hipérbole de Ouro. Concluímos com os Números Tribonacci e algumas propriedades que regem esses números. Realizamos algumas generalizações sobre Matrizes e Polinômios Tribonacci.

Page generated in 0.0361 seconds