• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Messsystem zur Überwachung von Faserkunststoffverbunden

Wolf, Peter 10 July 2012 (has links) (PDF)
Die Arbeit stellt ein Messsystem zur Überwachung von hochbelastbaren Leichtbauwerkstoffen, den Faserkunststoffverbunden vor. Speziell die Materialdehnung und die Eigenfrequenzen rotatorischer Systeme stellen als Schäden im makroskopischen Bereich eine Herausforderung an das Messsystem dar. Aber auch mikroskopische Erscheinungen wie Delaminationen oder Zwischenfaserbrüche gilt es an diesen Bauelementen zu erfassen.
2

Messsystem zur Überwachung von Faserkunststoffverbunden

Wolf, Peter 05 July 2012 (has links)
Die Arbeit stellt ein Messsystem zur Überwachung von hochbelastbaren Leichtbauwerkstoffen, den Faserkunststoffverbunden vor. Speziell die Materialdehnung und die Eigenfrequenzen rotatorischer Systeme stellen als Schäden im makroskopischen Bereich eine Herausforderung an das Messsystem dar. Aber auch mikroskopische Erscheinungen wie Delaminationen oder Zwischenfaserbrüche gilt es an diesen Bauelementen zu erfassen.
3

Zur werkstoffgerechten Gestaltung und Auslegung hybrider Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise

Spitzer, Sebastian 01 June 2022 (has links)
Derzeitige Entwicklungen auf dem Gebiet der Antriebstechnik sind einerseits geprägt durch stetig steigende Anforderungen an die Leistungsfähigkeit und Wirtschaftlichkeit technischer Erzeugnisse und andererseits durch eine zunehmende Verkürzung der Entwicklungs- und Produktlebenszyklen. Faser-Kunststoff-Verbunde (FKV) bieten in diesem Zusammenhang aufgrund ihrer herausragenden mechanischen Eigenschaften bei gleichzeitig hoher Flexibilität ein außergewöhnliches Potential für den Einsatz in Antriebswellen. Im Bereich der Lasteinleitungssysteme für Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise werden umfassende Untersuchungen zum Schädigungs- und Versagensverhalten bei Torsionsbelastung vorangetrieben. Eine praxistaugliche Methode zur effizienten Gestaltung und Auslegung derartiger hybrider Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise ist derzeit jedoch nicht verfügbar. In der vorliegenden Arbeit wird eine Vorgehensweise zur Erarbeitung praxistauglicher und werkstoffgerechter Gestaltungs- und Auslegungshinweise für hybride Antriebswellen in Metall/Faser-Kunststoff-Verbund-Bauweise am Beispiel der Pinverbindung erarbeitet. Dafür werden an der Pinverbindung die auftretenden Schädigungs- und Versagensphänomene bei der Einleitung von mechanischen Lasten identifiziert und modellhaft-experimentell untersucht. Basierend auf den dabei gewonnenen Erkenntnissen werden im Ingenieuralltag einsetzbare Gestaltungs- und Auslegungshinweise abgeleitet.:1 Einleitung 1 1.1 Zielstellung und Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Literaturübersicht . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Struktur und Schädigungsverhalten der Pinverbindung unter Torsionslast 11 2.1 Die Pinverbindung als Lasteinleitung in Faserverbund-Antriebswellen . 11 2.2 Fertigungstechnologie und Verbundstruktur . . . . . . . . . . . . . . . 14 2.3 Verformungs- und Schädigungsvorgänge im Lasteinleitungsbereich . . . 23 3 Numerische Beanspruchungsanalyse der Gesamtverbindung 29 3.1 Modellbeschreibung und Simulationsplanung . . . . . . . . . . . . . . . 30 3.2 Ergebnisdarstellung und -interpretation . . . . . . . . . . . . . . . . . . 32 3.3 Zusammenfassende Betrachtungen . . . . . . . . . . . . . . . . . . . . 44 4 Experimentelle Schädigungsanalyse und Kennwertermittlung 46 4.1 Planung und Spezifikation der Strukturversuche . . . . . . . . . . . . . 46 4.2 Prüfkörperfertigung und Versuchsdurchführung . . . . . . . . . . . . . 47 4.3 Verhalten der Pinverbindung unter Torsionslast . . . . . . . . . . . . . 50 4.4 Ermittlung technologiespezifischer Kenngrößen . . . . . . . . . . . . . . 59 4.5 Zusammenfassende Betrachtungen . . . . . . . . . . . . . . . . . . . . . 63 5 Numerische Versagensanalyse 67 5.1 Makroskopische Versagensanalyse der metallischen Lasteinleitung . . . 67 5.1.1 Werkstoffmodellierung . . . . . . . . . . . . . . . . . . . . . . . 68 5.1.2 Modellierung der Gesamtstruktur . . . . . . . . . . . . . . . . . 70 5.1.3 Schädigungsanalyse der metallischen Lasteinleitung . . . . . . . 72 5.1.4 Parametervariation und -analyse . . . . . . . . . . . . . . . . . . 75 5.2 Mesoskopische Versagensanalyse der Faserverbund-Welle . . . . . . . . 79 5.2.1 Skalenübergreifendes FE-Modell . . . . . . . . . . . . . . . . . . 79 5.2.2 Anstrengungen des Laminates im Pineinflussbereich und im freien Wellenbereich . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Ergebnisinterpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Schädigungs- und Versagensbedingungen und Interaktionsanalyse 90 6.1 Relevante Schädigungs- und Versagensmoden und korrelierende Parameter 90 6.2 Formulierung der Versagensbedingungen . . . . . . . . . . . . . . . . . 91 6.3 Parameterinteraktionsanalyse . . . . . . . . . . . . . . . . . . . . . . . 95 7 Praxisgerechte Gestaltungs- und Auslegungshinweise 97 7.1 Gestaltungs- und Auslegungsprozess . . . . . . . . . . . . . . . . . . . . 97 7.1.1 Phase 1: Gestaltung und Auslegung der Welle . . . . . . . . . . 99 7.1.2 Phase 2: Gestaltung und Auslegung der Nabe . . . . . . . . . . 102 7.1.3 Phase 3: Auslegung der Pins . . . . . . . . . . . . . . . . . . . . 109 7.2 Exemplarische Vorgehensweise . . . . . . . . . . . . . . . . . . . . . . . 109 8 Zusammenfassung 121 Literaturverzeichnis 123 A Anhang 137 A.1 Experimentelle Schädigungsanalyse . . . . . . . . . . . . . . . . . . . . 137 A.2 Numerische Schädigungsanalyse . . . . . . . . . . . . . . . . . . . . . . 142 A.3 Ergänzungen zur exemplarischen Vorgehensweise . . . . . . . . . . . . . 145 A.4 Ingenieurschaubilder und -tabellen . . . . . . . . . . . . . . . . . . . . 149
4

Einfluss fertigungsbedingter Imperfektionen auf die Schwingfestigkeit von FKV-Schalenstrukturen in Sandwichbauweise

Nielow, Dustin 11 April 2022 (has links)
Rotorblätter von Windenergieanlagen (WEA) weisen häufig lange vor dem Erreichen der prognostizierten Lebensdauer von 20 bis 30 Jahren Risse in der Blattschale auf. Die Folge sind aufwendige Reparaturen am installierten und schwer zugänglichen Rotorblatt und der kostenintensive Nutzungsausfall durch den Stillstand der WEA. Als mögliche Initiatoren für die Schäden in der Blattschale der Rotorblätter gelten fertigungsbedingte Imperfektionen. Für die Untersuchung des Einflusses dieser Imperfektionen auf das Ermüdungsverhalten der Rotorblätter wurde an der BAM (Bundesanstalt für Materialforschung und -prüfung) ein Prüfstand für statische und zyklische Versuche von Schalensegmenten im intermediate scale entwickelt und betrieben. Die untersuchten Schalensegmente in Sandwichbauweise sind der Rotorblattschale von WEA im Hinblick auf die Strukturmechanik, die Halbzeuge, den Laminataufbau und dem eingesetzten Fertigungsverfahren ähnlich. Als Imperfektionen wurden verschiedenen Variationen von Lagenstößen in die Hautlagen und Schaumstöße mit Breitenvariation in den Stützkern reproduzierbar eingebracht. Die Überwachung des Schädigungszustandes während der Schwingversuche unter realistischen Lastszenarien erfolgt über eine kombinierte in situ Schädigungsüberwachung mittels passiver Thermografie und Felddehnungsmessung. Mit den durchgeführten Schwingversuchen, der begleitenden Überwachung des Schädigungszustandes sowie dem validierten FEM-Modell ließen sich die Schadensinitiation und die signifikante Reduktion der Lebensdauer durch die eingebrachten Imperfektionen zweifelsfrei nachweisen. Die abgeleiteten Designregeln liefern für die Ingenieurpraxis wichtige Konstruktionshinweise und unterstützen die betriebssichere Auslegung von gekrümmten Sandwichkonstruktionen wie beispielsweise WEA-Rotorblätter.:1 Einleitung 1.1 Motivation 1.2 Zielsetzung 2 Stand der Technik 2.1 Grundlagen FKV-Werkstoffe 2.2 Rotorblätter von Windenergieanlagen 2.2.1 Rotorblattfertigung im SCRIMP-Verfahren 2.2.2 Typische fertigungsbedingte Imperfektionen im Rotorblatt 2.2.3 Lasten am Rotorblatt 2.2.4 Rotorblattprüfung und Komponentenversuche 2.3. Schalentheorie von monolithischen und Sandwichstrukturen 2.3.1 Analytische Betrachtung orthotroper Schalen 2.3.2 Versagensverhalten von Sandwichstrukturen unter Druckbelastung 2.3.3 Analytische Beschreibung des Stabilitätsversagens von Sandwichstrukturen 2.4 Strukturverhalten von Sandwichstrukturen unter statischen und zyklischen Lasten 2.5 Versagenskriterium für monolithisches Laminat nach Puck 2.6 Ermüdungsverhalten monolithischer Winkel-Mehrschichtverbunde 2.7 Materialcharakterisierung der GFK-Decklagen 2.7.1 Statische Materialkennwerte der GFK-Decklagen 2.7.2 Schwingversuche zur Ermittlung der Wöhlerkurve der GFK-Decklagen 2.7.3 Lineare Schädigungsakkumulation zur Berechnung der Schadensbeiträge 2.7.4 Schädigungsmechanismen bei statischer Schub-Zug-Beanspruchung 2.7.5 Im RHV-Schwingversuch erfasste Schädigungsmechanismen 2.8 In situ Überwachung des Schädigungszustandes mittels zerstörungsfreier Prüfung 2.8.1 In situ Überwachung - Optische Felddehnungsmessung 2.8.2 In situ Überwachung – passive Thermografie 3 Versuchsplanung 3.1 Schalenprüfstand für Substrukturen-Versuche 3.1.1 Anforderungen an den Schalenprüfstand 3.1.2 Konstruktion und Umsetzung 3.1.3 Integrierte Zustandsüberwachung 3.2 Der Schalenprüfkörper für Substrukturen-Versuche 3.2.1 Schalenprüfkörper – Auslegung 3.2.2 Schalenprüfkörper - Fertigungsverfahren 3.2.3 Schalenprüfkörper - Eingebrachte Imperfektionen 4 Statische und zyklische Versuche an Schalenprüfkörpern 4.1 Statische Versuche an Schalenprüfkörpern 4.1.1 Mit der Felddehnungsmessung detektierte Prüfkörperverformung 4.1.2 Detektierte Z-Verschiebung mittels Felddehnungsmessung 4.1.3 Diskussion der detektierten Verformung des Schalenprüfkörpers 4.1.4 Fazit – statische Druckversuche an Sandwichschalen 4.2 Numerische Abbildung des Schalenprüfkörpers 4.2.1 Nichtlineare Stabilitätsanalyse - Schalenprüfkörper ohne Imperfektion 4.2.2 Validierung des im FEM-Schalenmodell modellierten komplexen Verformungsverhaltens unter statischer Axiallast 4.2.3 FEA – laminatschichtweise Analyse der Anstrengung (Zfb, Puck) 4.2.4 Diskussion FEM-Schalenmodell 4.3 Schwingversuche an Schalenprüfkörpern 4.3.1 Referenzprüfkörper – Einstufen-Schwingversuch 4.3.2 Referenzprüfkörper – Zweistufen-Schwingversuch 4.3.3 Referenzprüfkörper - lokaler Steifigkeitsabfall im Mehrstufen-Schwingversuch 4.3.4 Referenzprüfkörper: Fazit der Ein- und Mehrstufen-Schwingversuche 4.3.5 Zweistufen-Schwingversuche an Prüfkörpern mit Imperfektionen 4.3.6 Im Mehrstufen-Schwingversuch erreichte Lastspielzahlen 4.3.7 Nachweis der Schadensinitiierung - Ansatz zur erweiterten Auswertung der passiven Thermografie 5 Diskussion der Ergebnisse 5.1 Diskussion der statischen Schalenversuche 5.2 Diskussion der Schwingversuche von Schalenprüfköpern 5.2.1 Schadensakkumulationsprozess der Sandwich-Schalenprüfkörper unter Zug-Druck-Wechsellast 5.2.2 Lastspielzahlen: Vergleich Material- und Substrukturen-Versuche 5.2.3 Anstrengung: Vergleich Material- und Substrukturen-Versuche 5.2.4 Angewendete ZfP-Verfahren: Sichtprüfung, passive Thermografie und Felddehnungsmessung 5.3 Diskussion der Skalierung auf die Blattschale realer Rotorblätter 6 Ausblick 7 Zusammenfassung Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Anhang

Page generated in 0.0889 seconds