• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 30
  • 7
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 165
  • 165
  • 165
  • 38
  • 35
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • 19
  • 19
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Innovative Purification Protocol for Heparin Binding Proteins: Relevance in Biopharmaceutical and Biomedical Applications

Batra, Sumit 01 May 2011 (has links)
Heparin binding (HB) proteins mediates a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins could bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to the currently available methods. One of the most important classes of heparin binding protein is the fibroblast growth factors (FGFs) and its receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak amberlite cation (IRC) exchanger. This approach is an alternative to conventional affinity column chromatography, which exhibit several disadvantages, including time-consuming experimental procedures and regeneration and results in high cost for production of recombinant proteins. Authenticity of the purified proteins was verified by SDS-PAGE and MALDI mass spectrum analysis. Results of the heparin binding chromatography and steady state fluorescence experiments showed that the FGF-1 and the D2 are in a native biologically active conformation. The findings of this study will not only aid an in-depth investigation of this class of proteins but will also provide avenues for inexpensive and efficient purification of other important biological macromolecules.
42

FGFR4 and β-Klotho in Metastatic Prostate Cancer

Shenefelt, Derek 24 July 2013 (has links)
FGFR4 and β-Klotho in Metastatic Prostate Cancer by Derek LaMar Shenefelt Fibroblast growth factors and fibroblast growth factor receptors have been associated with the aggressiveness and progression of Prostate Cancer (PCa). Also, β-Klotho is a known co-receptor with FGFR4 for FGF19 in the liver however, the role of this co-receptor pair remains unclear in the setting of PCa. I demonstrated that FGFR4 and KLB mRNA and protein are highly expressed in PCa cells when compared to bone marrow stromal cells, a common site of metastasis. I also provide support for the association of FGFR4 and KLB in PCa, suggesting a functional co-receptor pair capable of altering cellular signaling. FGFR4-KLb may also provide some level of protection to PCa cells from chemotherapeutics. This analysis of FGFR4 and KLB expression and signaling in PCa has provided novel insights into phenotypic alterations during PCa progression while also providing new avenues of study to further explore the role and importance of this exciting co-receptor complex.
43

Syndecan - Regulation and Function of its Glycosaminoglycan Chains

Eriksson, Anna S. January 2013 (has links)
The cell surface is an active area where extracellular molecules meet their receptors and affect the cellular fate by inducing for example cell proliferation and adhesion. Syndecans and integrins are two transmembrane molecules that have been suggested to fine-tune these activities, possibly in cooperation. Syndecans are proteoglycans, i.e. proteins with specific types of carbohydrate chains attached. These chains are glycosaminoglycans and either heparan sulfate (HS) or chondroitin sulfate (CS). Syndecans are known to influence cell adhesion and signaling. Integrins in turn, are important adhesion molecules that connect the extracellular matrix with the cytoskeleton, and hence can regulate cell motility. In an attempt to study how the two types of glycosaminoglycans attached to syndecan-1 can interact with integrins, a cell based model system was used and functional motility assays were performed. The results showed that HS, but not CS, on the cell surface was capable of regulating integrin-mediated cell motility. Regulation of intracellular signaling is crucial to prevent abnormal cellular behavior. In the second part of this thesis, the aim was to see how the presentation of glycosaminoglycan chains to the FGF signaling complex could affect the cellular response. When attached to the plasma membrane via syndecan-1, CS chains could support the intracellular signaling, although not promoting as strong signals as HS. When glycosaminoglycans were attached to free ectodomains of syndecan-1, both types of chains sequestered FGF2 from the receptors to the same extent, pointing towards functional overlap between CS and HS. To further study the interplay between HS and CS, their roles in the formation of pharyngeal cartilage in zebrafish were established. HS was important during chondrocyte intercalation and CS in the formation of the surrounding extracellular matrix. Further, the balance between the biosynthetic enzymes determined the ratio of HS and CS, and HS biosynthesis was prioritized over CS biosynthesis. The results presented in this thesis provide further insight into the regulation of HS biosynthesis, as well as the roles of both HS and CS on the cell surface. It is evident, that in certain situations there is a strict requirement for a certain HS structure, albeit in other situations there is a functional overlap between HS and CS.
44

The Role of FGF Signaling During Granule Neuron Precursor Development and Tumorigenesis

Emmenegger, Brian Andrew January 2010 (has links)
<p>Development requires a delicate balance of proliferation and differentiation. Too little proliferation can result in dysfunctional tissues, while prolonged or heightened proliferation can result in tumor formation. This is clearly seen with the granule neuron precursors (GNPs) of the cerebellum. Too little proliferation of these cells during development results in ataxia, whereas too much proliferation results in the cerebellar tumor medulloblastoma. While these cells are known to proliferate in response to Shh, it is not clear what controls the differentiation of these cells in vivo.</p><p> Previous work from our lab has identified basic fibroblast growth factor (bFGF) as a candidate differentiation factor for these cells. In this thesis, I characterize some of the cellular and molecular mechanisms involved in FGF-mediated inhibition (FMI) of Shh-induced GNP proliferation. In addition, I employ FGFR knockouts and a bFGF gain-of-function mouse to determine whether FGF signaling is necessary and/or sufficient for differentiation of GNPs during cerebellar development. Finally, the question of whether bFGF can be effective as a therapeutic agent for in vivo tumor treatment is tested in a transplant model.</p><p> These experiments indicate that FGF signaling is neither necessary nor sufficient for GNP differentiation during cerebellar development. However, transplanted tumors are potently inhibited by bFGF treatment. Furthermore, FMI is shown to occur around the level of Gli2 processing in the Shh pathway, implying that such a treatment has promise to be widely effective in treatment of Shh-dependent medulloblastomas.</p> / Dissertation
45

THE LOCALIZATION OF BASIC FIBROBLAST GROWTH FACTOR (FGF-2) IN RAT SUBMANDIBULAR GLANDS

SAKANAKA, MASAHIRO, KOBAYASHI, SHIGERU, UEDA, MINORU, SHIGETOMI, TOSHIO, KOSAKI, KENICHI, KAGAMI, HIDEAKI, HIRAMATSU, YOSHIYUKI 26 December 1994 (has links)
No description available.
46

Functional Studies of Candidate Oncogenes in Non-Small Cell Lung Cancer

Liao, Rachel Grace 18 October 2013 (has links)
Cancer is a set of complex genetic diseases driven by diverse genomic alterations. The genomic study of cancer has enabled the discovery of novel, targetable events in almost all cancer types and in turn, has led to the development of new, targeted cancer therapies benefiting patients; however, the recent explosion of genomic datasets has also resulted in huge lists of new oncogenic factors of unknown biological relevance, and uncertainty over how best to use the data appropriately to influence patient care. Some of the most pressing questions surround the use of statistical methods to identify actionable genomic alterations in cancer and the identification of driving oncogenes in the context of the genomic evolution of cancer cells, undergone before, during, and after prolonged treatment regimens.
47

Identification, regulation and lineage tracing of embryonic olfactory progenitors

Murdoch, Barbara 11 1900 (has links)
Neurogenesis occurs in exclusive regions in the adult nervous system, the subventricular zone and dentate gyrus in the brain, and olfactory epithelium (OE) in the periphery. Cell replacement after death or injury, occurs to varying degrees in neural tissue, and is thought to be dependent upon the biological responses of stem and/or progenitor cells. Despite the progress made to identify adult OE and central nervous system (CNS) progenitors and lineage trace their progeny, our spatial and temporal understanding of embryonic OE neuroglial progenitors has been stalled by the paucity of identifiable genes able to distinguish individual candidate progenitors. In the developing CNS, radial glia serve as both neural progenitors and scaffolding for migrating neuroblasts and are identified by the expression of a select group of antigens, including nestin. Here, I show that the embryonic OE contains a novel radial glial-like progenitor (RGLP) that is not detected in adult OE. RGLPs express the radial glial antigens nestin, GLAST and RC2, but not brain lipid binding protein (BLBP), which, distinct from CNS radial glia, is instead found in olfactory ensheathing cells, a result confirmed using lineage tracing with BLBP-cre mice. Nestin-cre-mediated lineage tracing with three different reporters reveals that only a subpopulation of nestin-expressing RGLPs activate the “CNS-specific” nestin regulatory elements, and produce spatially restricted neurons in the OE and vomeronasal organ. The dorsal-medial restriction of transgene-activating cells is also seen in the embryonic OE of Nestin-GFP transgenic mice, where GFP is found in a subpopulation of GFP+ Mash1+ neuronal progenitors, despite the fact that endogenous nestin expression is found in RGLPs throughout the OE. In vitro, embryonic OE progenitors produce three biologically distinct colony subtypes, that when generated from Nestin-cre/ZEG mice, produce GFP+ neurons, recapitulating their in vivo phenotype, and are enriched for the most neurogenic colony subtype. Neurogenesis in vitro is driven by the proliferation of nestin+ progenitors in response to FGF2. I thus provide evidence for a novel neurogenic precursor, the RGLP of the OE, that can be regulated by FGF2, and provide the first evidence for intrinsic differences in the origin and spatiotemporal potential of distinct progenitors during OE development.
48

Studies on signals mediating or preventing the intracrine induction of chromatin compaction and cell death by high molecular weight fibroblast growth factor 2

Ma, Xin 05 April 2011 (has links)
Fibroblast growth factor 2 (FGF2) is a multifunctional protein translated as CUG-initiated, high molecular weight (hi FGF2) or AUG-initiated, low molecular weight (lo FGF2) isoforms with potentially distinct functions. Previous work showed that overexpression of hi- but not lo FGF2 elicited chromatin compaction resulting in cell death, by an intracrine route. A series of studies were undertaken aimed at extending our understanding of the intracrine action of Hi FGF2. Major findings are as follows: a. Hi FGF2 overexpression induces apoptotic cell death, as indicated by increased TUNEL staining, and mitochondrial participation (cytochrome c release to cytosol, rescue of the hi FGF2 phenotype by the anti-apoptotic protein Bcl-2. b. Increased expression of pro-survival signals/proteins that are known to upregulate Bcl-2, such as nuclear Akt; the PIM-1 kinase; and the heat shock protein hsp70, also rescued the hi FGF2-induced phenotype. c. The hi-FGF2 effect was associated with sustained, intracrine, activation of ERK, and was blocked by ERK inhibitors. d. FGF2 isoform specific affinity chromatography followed by mass spectroscopy identified several proteins as potentially interacting with hi FGF2; of these, the p68 RNA helicase and the hsp70 were further confirmed as interacting partners, by co-immunoprecipitation. e. Increased nuclear co-localization, and possibly interaction, between hi FGF2 and overexpressed hsp70 correlated with rescue from hi FGF2 induced cell death. f. Factors associated with cardiac pathology (isoproterenol, angiotensin II, endothelin I) also upregulated endogenous hi FGF2 in cardiac cells in culture. Adriamycin-induced cardiotoxicity in the rat, known to be linked to increased incidence of apoptosis, was also associated with increased endogenous hi FGF2. g. Hi FGF2 is expressed in the human heart (atria) and localizes in both cytosol and nuclei, suggesting a participation in human heart physiology and pathophysiology. Work presented here is consistent with the notion that endogenous hi FGF2 up-regulation may play a role in promoting cell death during prolonged tissue stress and dysfunction. It follows that processes related to hi FGF2 upregulation, hi FGF2-nuclear protein interactions and mechanisms of hi FGF2 induced cell death, represent potential therapeutic targets for modulating cell death.
49

Understanding the Molecular Level Interactions of Cancer Inhibitor Imatinib with Human Fibroblast Growth Factor-1

Modi, Tulsi 01 May 2015 (has links)
Fibroblast growth factors (FGFs) lack signal sequences, and are exported through endoplasmic reticulum (ER)-Golgi-independent non-classical routes. FGFs work as modulators of various cellular activities like mitosis, differentiation, survival etc. Among the FGF family, which comprises of 23 different heparin proteins, human FGF-1 (hFGF-1), a potent angiogenic factors are one of the targets in cancer inhibition, as they are involved in blood vessel formation in tissues. There has been intensive research directed at the development of drugs that could effectively inhibit angiogenesis. In this context, the purpose of this study is to fully understand the molecular principles essential to determine probability of inhibition of hFGF-1 signaling transduction by imatinib. Imatinib, a 2-phenyl amino pyrimidine derivative is a tyrosine kinase inhibitor with antineoplastic activity. Imatinib binds to the intracellular pocket located within tyrosine kinases and inhibit the downstream cell proliferation events, but the exact molecular mechanism is still elusive. In this study, expression of hFGF-1 in recombinant E. coli was carried out, and the expressed protein was purified using heparin affinity column chromatography. The structural interactions governing imatinib-hFGF-1 interaction was studied by monitoring its stability, conformation and binding affinity by equilibrium unfolding using steady state fluorescence and proteolytic digestion assay. These data show that imatinib binds to hFGF-1 and enhances its thermal stability and solvent accessibility. In addition, biacore analysis was carried out to determine the binding affinity of imatinib to hFGF-1.
50

Studies on signals mediating or preventing the intracrine induction of chromatin compaction and cell death by high molecular weight fibroblast growth factor 2

Ma, Xin 05 April 2011 (has links)
Fibroblast growth factor 2 (FGF2) is a multifunctional protein translated as CUG-initiated, high molecular weight (hi FGF2) or AUG-initiated, low molecular weight (lo FGF2) isoforms with potentially distinct functions. Previous work showed that overexpression of hi- but not lo FGF2 elicited chromatin compaction resulting in cell death, by an intracrine route. A series of studies were undertaken aimed at extending our understanding of the intracrine action of Hi FGF2. Major findings are as follows: a. Hi FGF2 overexpression induces apoptotic cell death, as indicated by increased TUNEL staining, and mitochondrial participation (cytochrome c release to cytosol, rescue of the hi FGF2 phenotype by the anti-apoptotic protein Bcl-2. b. Increased expression of pro-survival signals/proteins that are known to upregulate Bcl-2, such as nuclear Akt; the PIM-1 kinase; and the heat shock protein hsp70, also rescued the hi FGF2-induced phenotype. c. The hi-FGF2 effect was associated with sustained, intracrine, activation of ERK, and was blocked by ERK inhibitors. d. FGF2 isoform specific affinity chromatography followed by mass spectroscopy identified several proteins as potentially interacting with hi FGF2; of these, the p68 RNA helicase and the hsp70 were further confirmed as interacting partners, by co-immunoprecipitation. e. Increased nuclear co-localization, and possibly interaction, between hi FGF2 and overexpressed hsp70 correlated with rescue from hi FGF2 induced cell death. f. Factors associated with cardiac pathology (isoproterenol, angiotensin II, endothelin I) also upregulated endogenous hi FGF2 in cardiac cells in culture. Adriamycin-induced cardiotoxicity in the rat, known to be linked to increased incidence of apoptosis, was also associated with increased endogenous hi FGF2. g. Hi FGF2 is expressed in the human heart (atria) and localizes in both cytosol and nuclei, suggesting a participation in human heart physiology and pathophysiology. Work presented here is consistent with the notion that endogenous hi FGF2 up-regulation may play a role in promoting cell death during prolonged tissue stress and dysfunction. It follows that processes related to hi FGF2 upregulation, hi FGF2-nuclear protein interactions and mechanisms of hi FGF2 induced cell death, represent potential therapeutic targets for modulating cell death.

Page generated in 0.0692 seconds